Coverage for /Syzygy/instrument/transforms/entry_thunk_transform.cc

CoverageLines executed / instrumented / missingexe / inst / missLanguageGroup
89.3%1501680.C++source

Line-by-line coverage:

   1    :  // Copyright 2012 Google Inc. All Rights Reserved.
   2    :  //
   3    :  // Licensed under the Apache License, Version 2.0 (the "License");
   4    :  // you may not use this file except in compliance with the License.
   5    :  // You may obtain a copy of the License at
   6    :  //
   7    :  //     http://www.apache.org/licenses/LICENSE-2.0
   8    :  //
   9    :  // Unless required by applicable law or agreed to in writing, software
  10    :  // distributed under the License is distributed on an "AS IS" BASIS,
  11    :  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12    :  // See the License for the specific language governing permissions and
  13    :  // limitations under the License.
  14    :  
  15    :  #include "syzygy/instrument/transforms/entry_thunk_transform.h"
  16    :  
  17    :  #include "base/logging.h"
  18    :  #include "base/strings/stringprintf.h"
  19    :  #include "syzygy/block_graph/block_builder.h"
  20    :  #include "syzygy/block_graph/block_util.h"
  21    :  #include "syzygy/common/defs.h"
  22    :  #include "syzygy/pe/pe_utils.h"
  23    :  #include "syzygy/pe/transforms/pe_add_imports_transform.h"
  24    :  
  25    :  namespace instrument {
  26    :  namespace transforms {
  27    :  
  28    :  using block_graph::BasicBlock;
  29    :  using block_graph::BasicCodeBlock;
  30    :  using block_graph::BasicBlockAssembler;
  31    :  using block_graph::BasicBlockReference;
  32    :  using block_graph::BasicBlockSubGraph;
  33    :  using block_graph::BlockBuilder;
  34    :  using block_graph::BlockGraph;
  35    :  using block_graph::Displacement;
  36    :  using block_graph::Operand;
  37    :  using block_graph::TransformPolicyInterface;
  38    :  using pe::transforms::PEAddImportsTransform;
  39    :  
  40    :  typedef pe::transforms::ImportedModule ImportedModule;
  41    :  
  42    :  const char EntryThunkTransform::kTransformName[] =
  43    :      "EntryThunkTransform";
  44    :  
  45    :  const char EntryThunkTransform::kEntryHookName[] = "_indirect_penter";
  46    :  const char EntryThunkTransform::kDllMainEntryHookName[] =
  47    :      "_indirect_penter_dllmain";
  48    :  const char EntryThunkTransform::kExeMainEntryHookName[] =
  49    :      "_indirect_penter_exemain";
  50    :  const char EntryThunkTransform::kDefaultInstrumentDll[] =
  51    :      "call_trace_client.dll";
  52    :  
  53    :  EntryThunkTransform::EntryThunkTransform()
  54    :      : thunk_section_(NULL),
  55    :        instrument_unsafe_references_(true),
  56    :        src_ranges_for_thunks_(false),
  57    :        only_instrument_module_entry_(false),
  58  E :        instrument_dll_name_(kDefaultInstrumentDll) {
  59  E :  }
  60    :  
  61    :  bool EntryThunkTransform::SetEntryThunkParameter(
  62  E :      const ImmediateType& immediate) {
  63    :    if (immediate.size() != assm::kSizeNone &&
  64  E :        immediate.size() != assm::kSize32Bit) {
  65  E :      return false;
  66    :    }
  67  E :    entry_thunk_parameter_ = immediate;
  68  E :    return true;
  69  E :  }
  70    :  
  71    :  bool EntryThunkTransform::SetFunctionThunkParameter(
  72  E :      const ImmediateType& immediate) {
  73    :    if (immediate.size() != assm::kSizeNone &&
  74  E :        immediate.size() != assm::kSize32Bit) {
  75  E :      return false;
  76    :    }
  77  E :    function_thunk_parameter_ = immediate;
  78  E :    return true;
  79  E :  }
  80    :  
  81  E :  bool EntryThunkTransform::EntryThunkIsParameterized() const {
  82  E :    return entry_thunk_parameter_.size() != assm::kSizeNone;
  83  E :  }
  84    :  
  85  E :  bool EntryThunkTransform::FunctionThunkIsParameterized() const {
  86  E :    return function_thunk_parameter_.size() != assm::kSizeNone;
  87  E :  }
  88    :  
  89    :  bool EntryThunkTransform::PreBlockGraphIteration(
  90    :      const TransformPolicyInterface* policy,
  91    :      BlockGraph* block_graph,
  92  E :      BlockGraph::Block* header_block) {
  93  E :    DCHECK_NE(reinterpret_cast<TransformPolicyInterface*>(NULL), policy);
  94  E :    DCHECK_NE(reinterpret_cast<BlockGraph*>(NULL), block_graph);
  95  E :    DCHECK_NE(reinterpret_cast<BlockGraph::Block*>(NULL), header_block);
  96  E :    DCHECK_EQ(BlockGraph::PE_IMAGE, block_graph->image_format());
  97  E :    DCHECK_EQ(reinterpret_cast<BlockGraph::Section*>(NULL), thunk_section_);
  98    :  
  99  E :    if (!GetEntryPoints(header_block))
 100  i :      return false;
 101    :  
 102  E :    ImportedModule import_module(instrument_dll_name_);
 103    :  
 104    :    // We import the minimal set of symbols necessary, depending on the types of
 105    :    // entry points we find in the module. We maintain a list of symbol indices/
 106    :    // reference pointers, which will be traversed after the import to populate
 107    :    // the references.
 108    :    typedef std::pair<size_t, BlockGraph::Reference*> ImportHook;
 109  E :    std::vector<ImportHook> import_hooks;
 110    :  
 111    :    // If there are any DllMain-like entry points (TLS initializers or DllMain
 112    :    // itself) then we need the DllMain entry hook.
 113  E :    if (dllmain_entrypoints_.size() > 0) {
 114    :      import_hooks.push_back(std::make_pair(
 115    :          import_module.AddSymbol(kDllMainEntryHookName,
 116    :                                  ImportedModule::kAlwaysImport),
 117  E :          &hook_dllmain_ref_));
 118    :    }
 119    :  
 120    :    // If this was an EXE then we need the EXE entry hook.
 121  E :    if (exe_entry_point_.first != NULL) {
 122    :      import_hooks.push_back(std::make_pair(
 123    :          import_module.AddSymbol(kExeMainEntryHookName,
 124    :                                  ImportedModule::kAlwaysImport),
 125  E :          &hook_exe_entry_ref_));
 126    :    }
 127    :  
 128    :    // If we're not only instrumenting module entry then we need the function
 129    :    // entry hook.
 130  E :    if (!only_instrument_module_entry_) {
 131    :      import_hooks.push_back(std::make_pair(
 132    :          import_module.AddSymbol(kEntryHookName,
 133    :                                  ImportedModule::kAlwaysImport),
 134  E :          &hook_ref_));
 135    :    }
 136    :  
 137    :    // Nothing to do if we don't need any import hooks.
 138  E :    if (import_hooks.empty())
 139  E :      return true;
 140    :  
 141    :    // Run the transform.
 142  E :    PEAddImportsTransform add_imports_transform;
 143  E :    add_imports_transform.AddModule(&import_module);
 144    :    if (!add_imports_transform.TransformBlockGraph(
 145  E :            policy, block_graph, header_block)) {
 146  i :      LOG(ERROR) << "Unable to add imports for instrumentation DLL.";
 147  i :      return false;
 148    :    }
 149    :  
 150    :    // Get references to each of the imported symbols.
 151  E :    for (size_t i = 0; i < import_hooks.size(); ++i) {
 152    :      if (!import_module.GetSymbolReference(import_hooks[i].first,
 153  E :                                            import_hooks[i].second)) {
 154  i :        LOG(ERROR) << "Unable to get reference to import.";
 155  i :        return false;
 156    :      }
 157  E :    }
 158    :  
 159    :    // Find or create the section we put our thunks in.
 160    :    thunk_section_ = block_graph->FindOrAddSection(common::kThunkSectionName,
 161  E :                                                   pe::kCodeCharacteristics);
 162  E :    DCHECK(thunk_section_ != NULL);
 163    :  
 164  E :    return true;
 165  E :  }
 166    :  
 167    :  bool EntryThunkTransform::OnBlock(const TransformPolicyInterface* policy,
 168    :                                    BlockGraph* block_graph,
 169  E :                                    BlockGraph::Block* block) {
 170  E :    DCHECK(block != NULL);
 171    :  
 172  E :    if (block->type() != BlockGraph::CODE_BLOCK)
 173  E :      return true;
 174    :  
 175  E :    return InstrumentCodeBlock(block_graph, block);
 176  E :  }
 177    :  
 178    :  bool EntryThunkTransform::InstrumentCodeBlock(
 179  E :      BlockGraph* block_graph, BlockGraph::Block* block) {
 180  E :    DCHECK(block_graph != NULL);
 181  E :    DCHECK(block != NULL);
 182    :  
 183    :    // Typedef for the thunk block map. The key is the offset within the callee
 184    :    // block and the value is the thunk block that forwards to the callee at that
 185    :    // offset.
 186  E :    ThunkBlockMap thunk_block_map;
 187    :  
 188    :    // Iterate through all the block's referrers, creating thunks as we go.
 189    :    // We copy the referrer set for simplicity, as it's potentially mutated
 190    :    // in the loop.
 191  E :    BlockGraph::Block::ReferrerSet referrers = block->referrers();
 192  E :    BlockGraph::Block::ReferrerSet::const_iterator referrer_it(referrers.begin());
 193  E :    for (; referrer_it != referrers.end(); ++referrer_it) {
 194  E :      const BlockGraph::Block::Referrer& referrer = *referrer_it;
 195    :      if (!InstrumentCodeBlockReferrer(
 196  E :          referrer, block_graph, block, &thunk_block_map)) {
 197  i :        return false;
 198    :      }
 199  E :    }
 200    :  
 201  E :    return true;
 202  E :  }
 203    :  
 204    :  bool EntryThunkTransform::InstrumentCodeBlockReferrer(
 205    :      const BlockGraph::Block::Referrer& referrer,
 206    :      BlockGraph* block_graph,
 207    :      BlockGraph::Block* block,
 208  E :      ThunkBlockMap* thunk_block_map) {
 209  E :    DCHECK(block_graph != NULL);
 210  E :    DCHECK(block != NULL);
 211  E :    DCHECK(thunk_block_map != NULL);
 212    :  
 213    :    // Get the reference.
 214  E :    BlockGraph::Reference ref;
 215  E :    if (!referrer.first->GetReference(referrer.second, &ref)) {
 216  i :      LOG(ERROR) << "Unable to get reference from referrer.";
 217  i :      return false;
 218    :    }
 219    :  
 220    :    // Skip self-references, except long references to the start of the block.
 221    :    // TODO(siggi): This needs refining, as it may currently miss important
 222    :    //     cases. Notably if a block contains more than one function, and the
 223    :    //     functions are mutually recursive, we'll only record the original
 224    :    //     entry to the block, but will miss the internal recursion.
 225    :    //     As-is, this does work for the common case where a block contains
 226    :    //     one self-recursive function, however.
 227  E :    if (referrer.first == block) {
 228    :      // Skip short references.
 229  E :      if (ref.size() < sizeof(core::AbsoluteAddress))
 230  E :        return true;
 231    :  
 232    :      // Skip interior references. The rationale for this is because these
 233    :      // references will tend to be switch tables, and we don't need the
 234    :      // overhead of instrumenting and recording all switch statement executions
 235    :      // for now.
 236  E :      if (ref.offset() != 0)
 237  E :        return true;
 238    :    }
 239    :  
 240    :    // See whether this is one of the DLL entrypoints.
 241  E :    pe::EntryPoint entry(ref.referenced(), ref.offset());
 242    :    pe::EntryPointSet::const_iterator entry_it(dllmain_entrypoints_.find(
 243  E :        entry));
 244  E :    bool is_dllmain_entry = entry_it != dllmain_entrypoints_.end();
 245    :  
 246    :    // Determine if this is an EXE entry point.
 247  E :    bool is_exe_entry = entry == exe_entry_point_;
 248    :  
 249    :    // It can't be both an EXE and a DLL entry.
 250  E :    DCHECK(!is_dllmain_entry || !is_exe_entry);
 251    :  
 252    :    // If we're only instrumenting entry points and this isn't one, then skip it.
 253  E :    if (only_instrument_module_entry_ && !is_dllmain_entry && !is_exe_entry)
 254  E :      return true;
 255    :  
 256    :    if (!instrument_unsafe_references_ &&
 257  E :        block_graph::IsUnsafeReference(referrer.first, ref)) {
 258  E :      LOG(INFO) << "Skipping reference between unsafe block pair '"
 259    :                << referrer.first->name() << "' and '"
 260    :                << block->name() << "'";
 261  E :      return true;
 262    :    }
 263    :  
 264    :    // Determine which hook function to use.
 265  E :    BlockGraph::Reference* hook_ref = &hook_ref_;
 266  E :    if (is_dllmain_entry)
 267  E :      hook_ref = &hook_dllmain_ref_;
 268  E :    else if (is_exe_entry)
 269  E :      hook_ref = &hook_exe_entry_ref_;
 270  E :    DCHECK(hook_ref->referenced() != NULL);
 271    :  
 272    :    // Determine which parameter to use, if any.
 273  E :    const ImmediateType* param = NULL;
 274  E :    if ((is_dllmain_entry || is_exe_entry) && EntryThunkIsParameterized()) {
 275  E :      param = &entry_thunk_parameter_;
 276  E :    } else if (FunctionThunkIsParameterized()) {
 277  E :      param = &function_thunk_parameter_;
 278    :    }
 279    :  
 280    :    // Look for the reference in the thunk block map, and only create a new one
 281    :    // if it does not already exist.
 282  E :    BlockGraph::Block* thunk_block = NULL;
 283  E :    ThunkBlockMap::const_iterator thunk_it = thunk_block_map->find(ref.offset());
 284  E :    if (thunk_it == thunk_block_map->end()) {
 285  E :      thunk_block = CreateOneThunk(block_graph, ref, *hook_ref, param);
 286  E :      if (thunk_block == NULL) {
 287  i :        LOG(ERROR) << "Unable to create thunk block.";
 288  i :        return false;
 289    :      }
 290  E :      (*thunk_block_map)[ref.offset()] = thunk_block;
 291  E :    } else {
 292  E :      thunk_block = thunk_it->second;
 293    :    }
 294  E :    DCHECK(thunk_block != NULL);
 295    :  
 296    :    // Update the referrer to point to the thunk.
 297    :    BlockGraph::Reference new_ref(ref.type(),
 298    :                                  ref.size(),
 299    :                                  thunk_block,
 300  E :                                  0, 0);
 301  E :    referrer.first->SetReference(referrer.second, new_ref);
 302    :  
 303  E :    return true;
 304  E :  }
 305    :  
 306    :  BlockGraph::Block* EntryThunkTransform::CreateOneThunk(
 307    :      BlockGraph* block_graph,
 308    :      const BlockGraph::Reference& destination,
 309    :      const BlockGraph::Reference& hook,
 310  E :      const ImmediateType* parameter) {
 311  E :    std::string name;
 312  E :    if (destination.offset() == 0) {
 313    :      name = base::StringPrintf("%s%s",
 314    :                                destination.referenced()->name().c_str(),
 315  E :                                common::kThunkSuffix);
 316  E :    } else {
 317    :      name = base::StringPrintf("%s%s+%d",
 318    :                                destination.referenced()->name().c_str(),
 319    :                                common::kThunkSuffix,
 320  E :                                destination.offset());
 321    :    }
 322    :  
 323    :    // Set up a basic block subgraph containing a single block description, with
 324    :    // that block description containing a single empty basic block, and get an
 325    :    // assembler writing into that basic block.
 326    :    // TODO(chrisha): Make this reusable somehow. Creating a code block via an
 327    :    //     assembler is likely to be pretty common.
 328  E :    BasicBlockSubGraph bbsg;
 329    :    BasicBlockSubGraph::BlockDescription* block_desc = bbsg.AddBlockDescription(
 330    :        name,
 331    :        NULL,
 332    :        BlockGraph::CODE_BLOCK,
 333    :        thunk_section_->id(),
 334    :        1,
 335  E :        0);
 336  E :    BasicCodeBlock* bb = bbsg.AddBasicCodeBlock(name);
 337  E :    block_desc->basic_block_order.push_back(bb);
 338    :    BasicBlockAssembler assm(bb->instructions().begin(),
 339  E :                             &bb->instructions());
 340    :  
 341    :    // Set up our thunk:
 342    :    // 1. push parameter
 343    :    // 2. push func_addr
 344    :    // 3. jmp hook_addr
 345  E :    if (parameter != NULL)
 346  E :      assm.push(*parameter);
 347  E :    assm.push(Immediate(destination.referenced(), destination.offset()));
 348  E :    assm.jmp(Operand(Displacement(hook.referenced(), hook.offset())));
 349    :  
 350    :    // Condense the whole mess into a block.
 351  E :    BlockBuilder block_builder(block_graph);
 352  E :    if (!block_builder.Merge(&bbsg)) {
 353  i :      LOG(ERROR) << "Failed to build thunk block.";
 354  i :      return NULL;
 355    :    }
 356    :  
 357    :    // Exactly one new block should have been created.
 358  E :    DCHECK_EQ(1u, block_builder.new_blocks().size());
 359  E :    BlockGraph::Block* thunk = block_builder.new_blocks().front();
 360    :  
 361  E :    if (src_ranges_for_thunks_) {
 362    :      // Give the thunk a source range synonymous with the destination.
 363    :      // That way the debugger will resolve calls and jumps to the thunk to the
 364    :      // destination function's name, which makes the assembly much easier to
 365    :      // read. The downside to this is that the symbols are now no longer unique,
 366    :      // and searching for a function by name may turn up either the function or
 367    :      // the thunk.
 368    :      const BlockGraph::Block::SourceRanges& source_ranges =
 369  E :          destination.referenced()->source_ranges();
 370    :      const BlockGraph::Block::SourceRanges::RangePair* source =
 371  E :          source_ranges.FindRangePair(destination.offset(), thunk->size());
 372  E :      if (source != NULL) {
 373    :        // Calculate the offset into the range.
 374  E :        size_t offs = destination.offset() - source->first.start();
 375  E :        BlockGraph::Block::DataRange data(0, thunk->size());
 376    :        BlockGraph::Block::SourceRange src(source->second.start() + offs,
 377  E :                                            thunk->size());
 378  E :        bool pushed = thunk->source_ranges().Push(data, src);
 379  E :        DCHECK(pushed);
 380    :      }
 381    :    }
 382    :  
 383  E :    return thunk;
 384  E :  }
 385    :  
 386  E :  bool EntryThunkTransform::GetEntryPoints(BlockGraph::Block* header_block) {
 387    :    // Get the TLS initializer entry-points. These have the same signature and
 388    :    // call patterns to DllMain.
 389  E :    if (!pe::GetTlsInitializers(header_block, &dllmain_entrypoints_)) {
 390  i :      LOG(ERROR) << "Failed to populate the TLS Initializer entry-points.";
 391  i :      return false;
 392    :    }
 393    :  
 394    :    // Get the DLL entry-point.
 395  E :    pe::EntryPoint dll_entry_point;
 396  E :    if (!pe::GetDllEntryPoint(header_block, &dll_entry_point)) {
 397  i :      LOG(ERROR) << "Failed to resolve the DLL entry-point.";
 398  i :      return false;
 399    :    }
 400    :  
 401    :    // If the image is an EXE or is a DLL that does not specify an entry-point
 402    :    // (the entry-point is optional for DLLs) then the dll_entry_point will have
 403    :    // a NULL block pointer. Otherwise, add it to the entry-point set.
 404  E :    if (dll_entry_point.first != NULL) {
 405  E :      dllmain_entrypoints_.insert(dll_entry_point);
 406  E :    } else {
 407    :      // Get the EXE entry point. We only need to bother looking if we didn't get
 408    :      // a DLL entry point, as we can't have both.
 409  E :      if (!pe::GetExeEntryPoint(header_block, &exe_entry_point_)) {
 410  i :        LOG(ERROR) << "Failed to resolve the EXE entry-point.";
 411  i :        return false;
 412    :      }
 413    :    }
 414    :  
 415  E :    return true;
 416  E :  }
 417    :  
 418    :  }  // namespace transforms
 419    :  }  // namespace instrument

Coverage information generated Thu Mar 26 16:15:41 2015.