Coverage for /Syzygy/block_graph/block_util.cc

CoverageLines executed / instrumented / missingexe / inst / missLanguageGroup
96.7%89920.C++source

Line-by-line coverage:

   1    :  // Copyright 2012 Google Inc. All Rights Reserved.
   2    :  //
   3    :  // Licensed under the Apache License, Version 2.0 (the "License");
   4    :  // you may not use this file except in compliance with the License.
   5    :  // You may obtain a copy of the License at
   6    :  //
   7    :  //     http://www.apache.org/licenses/LICENSE-2.0
   8    :  //
   9    :  // Unless required by applicable law or agreed to in writing, software
  10    :  // distributed under the License is distributed on an "AS IS" BASIS,
  11    :  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12    :  // See the License for the specific language governing permissions and
  13    :  // limitations under the License.
  14    :  
  15    :  #include "syzygy/block_graph/block_util.h"
  16    :  
  17    :  #include <algorithm>
  18    :  #include <vector>
  19    :  
  20    :  #include "mnemonics.h" // NOLINT
  21    :  
  22    :  namespace block_graph {
  23    :  
  24    :  bool GetBasicBlockSourceRange(const BasicCodeBlock& bb,
  25  E :                                BlockGraph::Block::SourceRange* source_range) {
  26  E :    DCHECK(source_range != NULL);
  27    :  
  28    :    typedef BlockGraph::Block::SourceRange SourceRange;
  29  E :    std::vector<SourceRange> ranges;
  30    :  
  31    :    // Collect all the instruction and successor source ranges.
  32  E :    BasicBlock::Instructions::const_iterator inst_it(bb.instructions().begin());
  33  E :    for (; inst_it != bb.instructions().end(); ++inst_it) {
  34  E :      const SourceRange& range = inst_it->source_range();
  35  E :      if (range.size() > 0)
  36  E :        ranges.push_back(range);
  37  E :    }
  38  E :    BasicBlock::Successors::const_iterator succ_it(bb.successors().begin());
  39  E :    for (; succ_it != bb.successors().end(); ++succ_it) {
  40  E :      const SourceRange& range = succ_it->source_range();
  41  E :      if (range.size() > 0)
  42  E :        ranges.push_back(range);
  43  E :    }
  44    :  
  45  E :    if (ranges.empty())
  46  E :      return false;
  47    :  
  48    :    // Sort the ranges.
  49  E :    std::sort(ranges.begin(), ranges.end());
  50    :  
  51    :    // Test that they're all contiguous, while computing their total length.
  52  E :    SourceRange::Size size = ranges[0].size();
  53  E :    for (size_t i = 0; i < ranges.size() - 1; ++i) {
  54  E :      size += ranges[i + 1].size();
  55  E :      if (ranges[i].start() + ranges[i].size() != ranges[i + 1].start())
  56  E :        return false;
  57  E :    }
  58  E :    *source_range = SourceRange(ranges[0].start(), size);
  59    :  
  60  E :    return true;
  61  E :  }
  62    :  
  63    :  bool IsUnsafeReference(const BlockGraph::Block* referrer,
  64  E :                         const BlockGraph::Reference& ref) {
  65    :    // Skip references with a non-zero offset if we're
  66    :    // not instrumenting unsafe references.
  67  E :    if (ref.offset() != 0)
  68  E :      return true;
  69    :  
  70    :    BlockGraph::BlockAttributes kUnsafeAttribs =
  71    :        BlockGraph::HAS_INLINE_ASSEMBLY |
  72  E :        BlockGraph::BUILT_BY_UNSUPPORTED_COMPILER;
  73    :  
  74  E :    bool unsafe_referrer = false;
  75    :    if (referrer->type() == BlockGraph::CODE_BLOCK &&
  76  E :        (referrer->attributes() & kUnsafeAttribs) != 0) {
  77  E :      unsafe_referrer = true;
  78    :    }
  79    :  
  80  E :    DCHECK_EQ(BlockGraph::CODE_BLOCK, ref.referenced()->type());
  81  E :    bool unsafe_block = (ref.referenced()->attributes() & kUnsafeAttribs) != 0;
  82    :  
  83    :    // If both the referrer and the referenced blocks are unsafe, we can't
  84    :    // safely assume that this reference represents a call semantics,
  85    :    // e.g. where a return address is at the top of stack at entry.
  86    :    // Ideally we'd decide this on the basis of a full stack analysis, but
  87    :    // beggers can't be choosers, plus for hand-coded assembly that's
  88    :    // the halting problem :).
  89    :    // For instrumentation that uses return address swizzling, instrumenting
  90    :    // an unsafe reference leads to crashes, so better to back off and get
  91    :    // slightly less coverage.
  92  E :    return unsafe_referrer && unsafe_block;
  93  E :  }
  94    :  
  95    :  bool HasUnexpectedStackFrameManipulation(
  96  E :      block_graph::BasicBlockSubGraph* subgraph) {
  97  E :    DCHECK(subgraph != NULL);
  98    :  
  99    :    BasicBlockSubGraph::BBCollection::iterator it =
 100  E :        subgraph->basic_blocks().begin();
 101    :  
 102    :    // Process each basic block to find an invalid stack manipulation.
 103  E :    for (; it != subgraph->basic_blocks().end(); ++it) {
 104  E :      BasicCodeBlock* bb = BasicCodeBlock::Cast(*it);
 105  E :      if (bb == NULL)
 106  E :        continue;
 107    :  
 108    :      // Process each instruction.
 109  E :      BasicBlock::Instructions::iterator iter_inst = bb->instructions().begin();
 110  E :      for (; iter_inst != bb->instructions().end(); ++iter_inst) {
 111  E :        const _DInst& repr = iter_inst->representation();
 112    :  
 113    :        // Consider only instructions whose first operand is EBP (read/write).
 114  E :        if (repr.ops[0].type == O_REG && repr.ops[0].index == R_EBP) {
 115    :          // PUSH/POP EBP is valid.
 116  E :          if (repr.opcode == I_POP || repr.opcode == I_PUSH)
 117  E :            continue;
 118    :  
 119    :          // MOV EBP, ESP is valid.
 120    :          if (repr.opcode == I_MOV &&
 121  E :              repr.ops[1].type == O_REG && repr.ops[1].index == R_ESP)
 122  E :            continue;
 123    :  
 124    :          // We found a non conventional write to register EBP (stack pointer).
 125  E :          return true;
 126    :        }
 127  E :      }
 128  E :    }
 129    :  
 130    :    // There is no unconventional/unexpected stack frame manipulation.
 131  E :    return false;
 132  E :  }
 133    :  
 134    :  bool GetJumpTableSize(const BlockGraph::Block* block,
 135    :      BlockGraph::Block::LabelMap::const_iterator jump_table_label,
 136  E :      size_t* table_size) {
 137  E :    DCHECK(block != NULL);
 138  E :    DCHECK(table_size != NULL);
 139    :    DCHECK(block->HasLabel(jump_table_label->first) &&
 140  E :        block->labels().at(jump_table_label->first) == jump_table_label->second);
 141    :  
 142    :    // Ensure that this label has the jump table attribute.
 143  E :    if (!jump_table_label->second.has_attributes(BlockGraph::JUMP_TABLE_LABEL)) {
 144  i :      LOG(ERROR) << "This label doesn't have the jump table attribute.";
 145  i :      return false;
 146    :    }
 147    :  
 148  E :    BlockGraph::Offset beginning_offset = jump_table_label->first;
 149  E :    BlockGraph::Offset end_offset = beginning_offset;
 150    :  
 151    :    // The maximum end offset for this jump table is either the offset of the next
 152    :    // label or the end of this block.
 153  E :    BlockGraph::Offset max_end_offset = 0;
 154  E :    BlockGraph::Block::LabelMap::const_iterator next_label = ++(jump_table_label);
 155  E :    if (next_label != block->labels().end())
 156  E :      max_end_offset = next_label->first;
 157  E :    else
 158  i :      max_end_offset = block->size();
 159    :  
 160  E :    DCHECK_NE(0, max_end_offset);
 161    :  
 162    :    BlockGraph::Block::ReferenceMap::const_iterator iter_ref =
 163  E :        block->references().find(beginning_offset);
 164  E :    DCHECK(iter_ref != block->references().end());
 165  E :    DCHECK(iter_ref->first == beginning_offset);
 166    :    DCHECK(iter_ref->second.type() == BlockGraph::ABSOLUTE_REF ||
 167  E :           iter_ref->second.type() == BlockGraph::RELATIVE_REF);
 168  E :    DCHECK_EQ(BlockGraph::Reference::kMaximumSize, iter_ref->second.size());
 169    :  
 170  E :    BlockGraph::Size reference_size = iter_ref->second.size();
 171    :  
 172    :    // Iterates over the references to calculate the size of this jump table, we
 173    :    // stop once we reach the maximum end offset or as soon as we find a reference
 174    :    // that is not contiguous to the previous one.
 175  E :    while (end_offset < max_end_offset) {
 176  E :      end_offset += reference_size;
 177  E :      ++iter_ref;
 178  E :      if (iter_ref == block->references().end() || iter_ref->first != end_offset)
 179  E :        break;
 180  E :      DCHECK_EQ(end_offset, iter_ref->first);
 181    :      DCHECK(iter_ref->second.type() == BlockGraph::ABSOLUTE_REF ||
 182  E :             iter_ref->second.type() == BlockGraph::RELATIVE_REF);
 183  E :      DCHECK_EQ(BlockGraph::Reference::kMaximumSize, iter_ref->second.size());
 184  E :    }
 185    :  
 186    :    *table_size = (end_offset - beginning_offset) /
 187  E :        BlockGraph::Reference::kMaximumSize;
 188    :  
 189  E :    return true;
 190  E :  }
 191    :  
 192    :  }  // namespace block_graph

Coverage information generated Thu Jan 14 17:40:38 2016.