Coverage for /Syzygy/block_graph/basic_block_decomposer.cc

CoverageLines executed / instrumented / missingexe / inst / missLanguageGroup
94.5%5125420.C++source

Line-by-line coverage:

   1    :  // Copyright 2012 Google Inc. All Rights Reserved.
   2    :  //
   3    :  // Licensed under the Apache License, Version 2.0 (the "License");
   4    :  // you may not use this file except in compliance with the License.
   5    :  // You may obtain a copy of the License at
   6    :  //
   7    :  //     http://www.apache.org/licenses/LICENSE-2.0
   8    :  //
   9    :  // Unless required by applicable law or agreed to in writing, software
  10    :  // distributed under the License is distributed on an "AS IS" BASIS,
  11    :  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12    :  // See the License for the specific language governing permissions and
  13    :  // limitations under the License.
  14    :  //
  15    :  // Implementation of basic block decomposer.
  16    :  
  17    :  #include "syzygy/block_graph/basic_block_decomposer.h"
  18    :  
  19    :  #include <algorithm>
  20    :  #include <vector>
  21    :  
  22    :  #include "base/logging.h"
  23    :  #include "base/stringprintf.h"
  24    :  #include "syzygy/block_graph/basic_block.h"
  25    :  #include "syzygy/block_graph/basic_block_subgraph.h"
  26    :  #include "syzygy/block_graph/block_graph.h"
  27    :  #include "syzygy/block_graph/block_util.h"
  28    :  
  29    :  #include "mnemonics.h"  // NOLINT
  30    :  
  31    :  namespace block_graph {
  32    :  
  33    :  namespace {
  34    :  
  35    :  using block_graph::BasicBlock;
  36    :  using block_graph::BasicBlockReference;
  37    :  using block_graph::BasicBlockReferrer;
  38    :  using block_graph::BasicBlockSubGraph;
  39    :  using block_graph::BlockGraph;
  40    :  using block_graph::Instruction;
  41    :  using block_graph::Successor;
  42    :  using core::Disassembler;
  43    :  
  44    :  typedef BlockGraph::Block Block;
  45    :  typedef BlockGraph::Offset Offset;
  46    :  typedef BlockGraph::Size Size;
  47    :  typedef core::AddressSpace<Offset, size_t, BasicBlock*> BBAddressSpace;
  48    :  typedef BBAddressSpace::Range Range;
  49    :  typedef BBAddressSpace::RangeMap RangeMap;
  50    :  typedef BBAddressSpace::RangeMapConstIter RangeMapConstIter;
  51    :  typedef BBAddressSpace::RangeMapIter RangeMapIter;
  52    :  
  53    :  const size_t kPointerSize = BlockGraph::Reference::kMaximumSize;
  54    :  
  55    :  // We use a (somewhat) arbitrary value as the disassembly address for a block
  56    :  // so we can tell the difference between a reference to the beginning of the
  57    :  // block (offset=0) and a null address.
  58    :  const size_t kDisassemblyAddress = 65536;
  59    :  
  60    :  // Look up the reference made from an instruction's byte range within the
  61    :  // given block. The reference should start AFTER the instruction starts
  62    :  // and there should be exactly 1 reference in the byte range.
  63    :  // Returns true if the reference was found, false otherwise.
  64    :  bool GetReferenceOfInstructionAt(const Block* block,
  65    :                                   Offset instr_offset,
  66    :                                   Size instr_size,
  67  E :                                   BlockGraph::Reference* ref) {
  68  E :    DCHECK(block != NULL);
  69  E :    DCHECK_LE(0, instr_offset);
  70  E :    DCHECK_LT(0U, instr_size);
  71  E :    DCHECK(ref != NULL);
  72    :  
  73    :    // Find the first reference following the instruction offset.
  74    :    Block::ReferenceMap::const_iterator ref_iter =
  75  E :        block->references().upper_bound(instr_offset);
  76    :  
  77    :    // If no reference is found then we're done.
  78  E :    if (ref_iter == block->references().end())
  79  E :      return false;
  80    :  
  81    :    // If the reference occurs outside the instruction then we're done.
  82  E :    Offset next_instr_offset = instr_offset + instr_size;
  83  E :    if (ref_iter->first >= next_instr_offset)
  84  E :      return false;
  85    :  
  86    :    // Otherwise, the reference should fit into the instruction.
  87    :    CHECK_LE(static_cast<size_t>(next_instr_offset),
  88  E :             ref_iter->first + ref_iter->second.size());
  89    :  
  90    :    // And it should be the only reference in the instruction.
  91  E :    if (ref_iter != block->references().begin()) {
  92  E :      Block::ReferenceMap::const_iterator prev_iter = ref_iter;
  93  E :      --prev_iter;
  94    :      CHECK_GE(static_cast<size_t>(instr_offset),
  95  E :               prev_iter->first + prev_iter->second.size());
  96    :    }
  97  E :    Block::ReferenceMap::const_iterator next_iter = ref_iter;
  98  E :    ++next_iter;
  99    :    CHECK(next_iter == block->references().end() ||
 100  E :          next_iter->first >= next_instr_offset);
 101    :  
 102  E :    *ref = ref_iter->second;
 103  E :    return true;
 104  E :  }
 105    :  
 106    :  // Transfer instructions from original to tail, starting with the instruction
 107    :  // starting at offset.
 108    :  bool SplitInstructionListAt(Offset offset,
 109    :                              BasicBlock::Instructions* original,
 110  E :                              BasicBlock::Instructions* tail) {
 111  E :    DCHECK(original != NULL);
 112  E :    DCHECK(tail != NULL && tail->empty());
 113    :  
 114  E :    BasicBlock::Instructions::iterator it(original->begin());
 115  E :    while (offset > 0 && it != original->end()) {
 116  E :      offset -= it->size();
 117  E :      ++it;
 118  E :    }
 119    :  
 120    :    // Did we terminate at an instruction boundary?
 121  E :    if (offset != 0)
 122  E :      return false;
 123    :  
 124  E :    tail->splice(tail->end(), *original, it, original->end());
 125  E :    return true;
 126  E :  }
 127    :  
 128    :  }  // namespace
 129    :  
 130    :  BasicBlockDecomposer::BasicBlockDecomposer(const BlockGraph::Block* block,
 131    :                                             BasicBlockSubGraph* subgraph)
 132    :      : block_(block),
 133    :        subgraph_(subgraph),
 134    :        current_block_start_(0),
 135  E :        check_decomposition_results_(true) {
 136    :    // TODO(rogerm): Once we're certain this is stable for all input binaries
 137    :    //     turn on check_decomposition_results_ by default only ifndef NDEBUG.
 138  E :    DCHECK(block != NULL);
 139  E :    DCHECK(block->type() == BlockGraph::CODE_BLOCK);
 140    :  
 141    :    // If no subgraph was provided then use a scratch one.
 142  E :    if (subgraph == NULL) {
 143  E :      scratch_subgraph_.reset(new BasicBlockSubGraph());
 144  E :      subgraph_ = scratch_subgraph_.get();
 145    :    }
 146  E :  }
 147    :  
 148  E :  bool BasicBlockDecomposer::Decompose() {
 149  E :    DCHECK(subgraph_->basic_blocks().empty());
 150  E :    DCHECK(subgraph_->block_descriptions().empty());
 151  E :    DCHECK(original_address_space_.empty());
 152  E :    subgraph_->set_original_block(block_);
 153    :  
 154    :    // We cache the fact that disassembly failed, and don't do it again.
 155    :    // TODO(chrisha): Once policy is in place, cache policy results. Then make
 156    :    //     this decomposer fail hard (CHECK) rather than returning false. Finally,
 157    :    //     remove this caching.
 158  E :    if (block_->attributes() & BlockGraph::ERRORED_DISASSEMBLY)
 159  i :      return false;
 160    :  
 161  E :    if (!Disassemble()) {
 162    :      // We are knowingly casting away const status here. This uglyness shall go
 163    :      // away post policy-refactor, but I don't want to needlessly change the
 164    :      // BB decomposer API in the meantime.
 165    :      // TODO(chrisha): Get rid of this heinous breach of const correctness!
 166  E :      const_cast<Block*>(block_)->set_attribute(BlockGraph::ERRORED_DISASSEMBLY);
 167  E :      return false;
 168    :    }
 169    :  
 170    :    // Don't bother with the following bookkeeping work if the results aren't
 171    :    // being looked at.
 172  E :    if (scratch_subgraph_.get() != NULL)
 173  E :      return true;
 174    :  
 175    :    typedef BasicBlockSubGraph::BlockDescription BlockDescription;
 176  E :    subgraph_->block_descriptions().push_back(BlockDescription());
 177  E :    BlockDescription& desc = subgraph_->block_descriptions().back();
 178  E :    desc.name = block_->name();
 179  E :    desc.compiland_name = block_->compiland_name();
 180  E :    desc.type = block_->type();
 181  E :    desc.alignment = block_->alignment();
 182  E :    desc.attributes = block_->attributes();
 183  E :    desc.section = block_->section();
 184    :  
 185    :    // Add the basic blocks to the block descriptor.
 186  E :    Offset offset = 0;
 187  E :    RangeMapConstIter it = original_address_space_.begin();
 188  E :    for (; it != original_address_space_.end(); ++it) {
 189  E :      DCHECK_EQ(it->first.start(), offset);
 190  E :      desc.basic_block_order.push_back(it->second);
 191    :  
 192    :      // Any data basic blocks (jump and case tables) with 0 mod 4 alignment
 193    :      // are marked so that the alignment is preserved by the block builder.
 194    :      if (desc.alignment >= kPointerSize &&
 195    :          it->second->type() == BasicBlock::BASIC_DATA_BLOCK &&
 196  E :          (offset % kPointerSize) == 0) {
 197  E :        it->second->set_alignment(kPointerSize);
 198    :      }
 199    :  
 200  E :      offset += it->first.size();
 201  E :    }
 202    :  
 203  E :    return true;
 204  E :  }
 205    :  
 206    :  bool BasicBlockDecomposer::DecodeInstruction(Offset offset,
 207    :                                               Offset code_end_offset,
 208  E :                                               Instruction* instruction) const {
 209    :    // The entire offset range should fall within the extent of block_ and the
 210    :    // output instruction pointer must not be NULL.
 211  E :    DCHECK_LE(0, offset);
 212  E :    DCHECK_LT(offset, code_end_offset);
 213  E :    DCHECK_LE(static_cast<Size>(code_end_offset), block_->size());
 214  E :    DCHECK(instruction != NULL);
 215    :  
 216    :    // Decode the instruction.
 217  E :    const uint8* buffer = block_->data() + offset;
 218  E :    size_t max_length = code_end_offset - offset;
 219  E :    if (!Instruction::FromBuffer(buffer, max_length, instruction)) {
 220  i :      VLOG(1) << "Failed to decode instruction at offset " << offset
 221    :              << " of block '" << block_->name() << "'.";
 222    :  
 223    :      // Dump the bytes to aid in debugging.
 224  i :      std::string dump;
 225  i :      size_t dump_length = std::min(max_length, Instruction::kMaxSize);
 226  i :      for (size_t i = 0; i < dump_length; ++i)
 227  i :        base::StringAppendF(&dump, " %02X", buffer[i]);
 228  i :      VLOG(2) << ".text =" << dump << (dump_length < max_length ? "..." : ".");
 229    :  
 230    :      // Return false to indicate an error.
 231  i :      return false;
 232    :    }
 233    :  
 234  E :    VLOG(3) << "Disassembled " << instruction->GetName()
 235    :            << " instruction (" << instruction->size()
 236    :            << " bytes) at offset " << offset << ".";
 237    :  
 238    :    // Track the source range.
 239    :    instruction->set_source_range(
 240  E :        GetSourceRange(offset, instruction->size()));
 241    :  
 242    :    // If the block is labeled, preserve the label.
 243  E :    BlockGraph::Label label;
 244  E :    if (block_->GetLabel(offset, &label)) {
 245    :      // If this instruction has run into known data, then we have a problem!
 246  E :      CHECK(!label.has_attributes(BlockGraph::DATA_LABEL))
 247    :          << "Disassembling into data at offset " << offset << " of "
 248    :          << block_->name() << ".";
 249  E :      instruction->set_label(label);
 250    :    }
 251    :  
 252  E :    return true;
 253  E :  }
 254    :  
 255    :  BasicBlockDecomposer::SourceRange BasicBlockDecomposer::GetSourceRange(
 256  E :      Offset offset, Size size) const {
 257    :    // Find the source range for the original bytes. We may not have a data
 258    :    // range for bytes that were synthesized in other transformations. As a
 259    :    // rule, however, there should be a covered data range for each instruction,
 260    :    // successor, that relates back to the original image.
 261    :    const Block::SourceRanges::RangePair* range_pair =
 262  E :        block_->source_ranges().FindRangePair(offset, size);
 263    :    // Return an empty range if we found nothing.
 264  E :    if (range_pair == NULL)
 265  E :      return SourceRange();
 266    :  
 267  E :    const Block::DataRange& data_range = range_pair->first;
 268  E :    const Block::SourceRange& source_range = range_pair->second;
 269  E :    if (offset == data_range.start() && size == data_range.size()) {
 270    :      // We match a data range exactly, so let's use the entire
 271    :      // matching source range.
 272  E :      return source_range;
 273    :    }
 274    :  
 275    :    // The data range doesn't match exactly, so let's slice the corresponding
 276    :    // source range. The assumption here is that no transformation will ever
 277    :    // slice the data or source ranges for an instruction, so we should always
 278    :    // have a covering data and source ranges.
 279  E :    DCHECK_GE(offset, data_range.start());
 280  E :    DCHECK_LE(offset + size, data_range.start() + data_range.size());
 281    :  
 282  E :    Offset start_offs = offset - data_range.start();
 283  E :    return SourceRange(source_range.start() + start_offs, size);
 284  E :  }
 285    :  
 286    :  bool BasicBlockDecomposer::FindBasicBlock(Offset offset,
 287    :                                            BasicBlock** basic_block,
 288  E :                                            Range* range) const {
 289  E :    DCHECK_LE(0, offset);
 290  E :    DCHECK(basic_block != NULL);
 291  E :    DCHECK(range != NULL);
 292  E :    DCHECK(subgraph_->original_block() != NULL);
 293  E :    DCHECK_GT(subgraph_->original_block()->size(), static_cast<size_t>(offset));
 294    :  
 295    :    RangeMapConstIter bb_iter =
 296  E :        original_address_space_.FindFirstIntersection(Range(offset, 1));
 297    :  
 298  E :    if (bb_iter == original_address_space_.end())
 299  i :      return false;
 300    :  
 301  E :    *basic_block = bb_iter->second;
 302  E :    *range = bb_iter->first;
 303  E :    return true;
 304  E :  }
 305    :  
 306  E :  BasicBlock* BasicBlockDecomposer::GetBasicBlockAt(Offset offset) const {
 307  E :    DCHECK_LE(0, offset);
 308  E :    DCHECK(subgraph_->original_block() != NULL);
 309  E :    DCHECK_GT(subgraph_->original_block()->size(), static_cast<size_t>(offset));
 310    :  
 311  E :    BasicBlock* bb = NULL;
 312  E :    Range range;
 313  E :    CHECK(FindBasicBlock(offset, &bb, &range));
 314  E :    DCHECK(bb != NULL);
 315  E :    DCHECK_EQ(offset, range.start());
 316  E :    return bb;
 317  E :  }
 318    :  
 319  E :  void BasicBlockDecomposer::InitJumpTargets(Offset code_end_offset) {
 320  E :    DCHECK_LE(static_cast<Size>(code_end_offset), block_->size());
 321    :  
 322    :    // Make sure the jump target set is empty.
 323  E :    jump_targets_.clear();
 324    :  
 325    :    // For each referrer, check if it references code. If so, it's a jump target.
 326    :    BlockGraph::Block::ReferrerSet::const_iterator ref_iter =
 327  E :        block_->referrers().begin();
 328  E :    for (; ref_iter != block_->referrers().end(); ++ref_iter) {
 329  E :      BlockGraph::Reference ref;
 330  E :      bool found = ref_iter->first->GetReference(ref_iter->second, &ref);
 331  E :      DCHECK(found);
 332  E :      DCHECK_EQ(block_, ref.referenced());
 333  E :      DCHECK_LE(0, ref.base());
 334  E :      DCHECK_LT(static_cast<size_t>(ref.base()), block_->size());
 335    :  
 336    :      // Ignore references to the data portion of the block.
 337  E :      if (ref.base() >= code_end_offset)
 338  E :        continue;
 339    :  
 340  E :      jump_targets_.insert(ref.base());
 341  E :    }
 342  E :  }
 343    :  
 344    :  bool BasicBlockDecomposer::HandleInstruction(const Instruction& instruction,
 345  E :                                               Offset offset) {
 346    :    // We do not handle the SYS* instructions. These should ONLY occur inside
 347    :    // the OS system libraries, mediated by an OS system call. We expect that
 348    :    // they NEVER occur in application code.
 349  E :    if (instruction.IsSystemCall()) {
 350  i :      VLOG(1) << "Encountered an unexpected " << instruction.GetName()
 351    :              << " instruction at offset " << offset << " of block '"
 352    :              << block_->name() << "'.";
 353  i :      return false;
 354    :    }
 355    :  
 356    :    // Calculate the offset of the next instruction. We'll need this if this
 357    :    // instruction marks the end of a basic block.
 358  E :    Offset next_instruction_offset = offset + instruction.size();
 359    :  
 360    :    // If the instruction is not a branch then it needs to be appended to the
 361    :    // current basic block... which we close if the instruction is a return or
 362    :    // a call to a non-returning function.
 363  E :    if (!instruction.IsBranch()) {
 364  E :      current_instructions_.push_back(instruction);
 365  E :      if (instruction.IsReturn()) {
 366  E :        EndCurrentBasicBlock(next_instruction_offset);
 367  E :      } else if (instruction.IsCall()) {
 368  E :        BlockGraph::Reference ref;
 369    :        bool found = GetReferenceOfInstructionAt(
 370  E :            block_, offset, instruction.size(), &ref);
 371    :        if (found && Instruction::IsCallToNonReturningFunction(
 372  E :                instruction.representation(), ref.referenced(), ref.offset())) {
 373  E :          EndCurrentBasicBlock(next_instruction_offset);
 374    :        }
 375    :      }
 376  E :      return true;
 377    :    }
 378    :  
 379    :    // If the branch is not PC-Relative then it also needs to be appended to
 380    :    // the current basic block... which we then close.
 381  E :    if (!instruction.HasPcRelativeOperand(0)) {
 382  E :      current_instructions_.push_back(instruction);
 383  E :      EndCurrentBasicBlock(next_instruction_offset);
 384  E :      return true;
 385    :    }
 386    :  
 387    :    // Otherwise, we're dealing with a branch whose destination is explicit.
 388  E :    DCHECK(instruction.IsBranch());
 389  E :    DCHECK(instruction.HasPcRelativeOperand(0));
 390    :  
 391    :    // Make sure we understand the branching condition. If we don't, then
 392    :    // there's an instruction we have failed to consider.
 393    :    Successor::Condition condition = Successor::OpCodeToCondition(
 394  E :        instruction.opcode());
 395  E :    CHECK_NE(Successor::kInvalidCondition, condition)
 396    :        << "Received unknown condition for branch instruction: "
 397    :        << instruction.GetName() << ".";
 398    :  
 399    :    // If this is a conditional branch add the inverse conditional successor
 400    :    // to represent the fall-through. If we don't understand the inverse, then
 401    :    // there's an instruction we have failed to consider.
 402  E :    if (instruction.IsConditionalBranch()) {
 403    :      Successor::Condition inverse_condition =
 404  E :          Successor::InvertCondition(condition);
 405  E :      CHECK_NE(Successor::kInvalidCondition, inverse_condition)
 406    :          << "Non-invertible condition seen for branch instruction: "
 407    :          << instruction.GetName() << ".";
 408    :  
 409    :      // Create an (unresolved) successor pointing to the next instruction.
 410    :      BasicBlockReference ref(BlockGraph::PC_RELATIVE_REF,
 411    :                              1,  // The size is irrelevant in successors.
 412    :                              const_cast<Block*>(block_),
 413    :                              next_instruction_offset,
 414  E :                              next_instruction_offset);
 415  E :      current_successors_.push_front(Successor(inverse_condition, ref, 0));
 416  E :      jump_targets_.insert(next_instruction_offset);
 417  E :    }
 418    :  
 419    :    // Attempt to figure out where the branch is going by finding a
 420    :    // reference inside the instruction's byte range.
 421  E :    BlockGraph::Reference ref;
 422    :    bool found = GetReferenceOfInstructionAt(
 423  E :        block_, offset, instruction.size(), &ref);
 424    :  
 425    :    // If a reference was found, prefer its destination information to the
 426    :    // information conveyed by the bytes in the instruction. This should
 427    :    // handle all inter-block jumps (thunks, tail-call elimination, etc).
 428    :    // Otherwise, create a reference into the current block.
 429  E :    if (found) {
 430    :      // This is an explicit branching instruction so we expect the reference to
 431    :      // be direct.
 432  E :      if (!ref.IsDirect()) {
 433  i :        VLOG(1) << "Encountered an explicit control flow instruction containing "
 434    :                << "an indirect reference.";
 435  i :        return false;
 436    :      }
 437  E :    } else {
 438    :      Offset target_offset =
 439  E :          next_instruction_offset + instruction.representation().imm.addr;
 440    :  
 441    :      // If we don't have a reference (coming from a fixup) for a PC-relative jump
 442    :      // then we expect its destination to be in the block. We only see otherwise
 443    :      // in assembly generated code where section contributions don't correspond
 444    :      // to entire function bodies.
 445    :      if (target_offset < 0 ||
 446  E :          static_cast<Size>(target_offset) >= block_->size()) {
 447  i :        VLOG(1) << "Unexpected PC-relative target offset is external to block.";
 448  i :        return false;
 449    :      }
 450    :  
 451    :      ref = BlockGraph::Reference(BlockGraph::PC_RELATIVE_REF,
 452    :                                  1,  // Size is irrelevant in successors.
 453    :                                  const_cast<Block*>(block_),
 454    :                                  target_offset,
 455  E :                                  target_offset);
 456    :    }
 457    :  
 458    :    // If the reference points to the current block, track the target offset.
 459  E :    if (ref.referenced() == block_)
 460  E :      jump_targets_.insert(ref.offset());
 461    :  
 462    :    // Create the successor, preserving the source range and label.
 463    :    BasicBlockReference bb_ref(
 464  E :        ref.type(), ref.size(), ref.referenced(), ref.offset(), ref.base());
 465  E :    Successor succ(condition, bb_ref, instruction.size());
 466  E :    succ.set_source_range(instruction.source_range());
 467  E :    succ.set_label(instruction.label());
 468  E :    current_successors_.push_front(succ);
 469    :  
 470    :    // Having just branched, we need to end the current basic block.
 471  E :    EndCurrentBasicBlock(next_instruction_offset);
 472  E :    return true;
 473  E :  }
 474    :  
 475  E :  bool BasicBlockDecomposer::EndCurrentBasicBlock(Offset end_offset) {
 476    :    // We have reached the end of the current walk or we handled a conditional
 477    :    // branch. Let's mark this as the end of a basic block.
 478  E :    int basic_block_size = end_offset - current_block_start_;
 479  E :    DCHECK_LT(0, basic_block_size);
 480    :    if (!InsertBasicBlockRange(current_block_start_,
 481    :                               basic_block_size,
 482  E :                               BasicBlock::BASIC_CODE_BLOCK)) {
 483  i :      return false;
 484    :    }
 485    :  
 486    :    // Remember the end offset as the start of the next basic block.
 487  E :    current_block_start_ = end_offset;
 488  E :    return true;
 489  E :  }
 490    :  
 491  E :  bool BasicBlockDecomposer::GetCodeRangeAndCreateDataBasicBlocks(Offset* end) {
 492  E :    DCHECK_NE(reinterpret_cast<Offset*>(NULL), end);
 493    :  
 494  E :    *end = 0;
 495    :  
 496    :    // By default, we assume the entire block is code.
 497  E :    Offset code_end = block_->size();
 498    :  
 499    :    // Iterate over all labels, looking for data labels.
 500    :    BlockGraph::Block::LabelMap::const_reverse_iterator it =
 501  E :        block_->labels().rbegin();
 502  E :    bool saw_non_data_label = false;
 503  E :    for (; it != block_->labels().rend(); ++it) {
 504  E :      const BlockGraph::Label& label = it->second;
 505  E :      if (label.has_attributes(BlockGraph::DATA_LABEL)) {
 506    :        // There should never be data labels beyond the end of the block.
 507  E :        if (it->first >= static_cast<Offset>(block_->size())) {
 508  i :          VLOG(1) << "Encountered a data label at offset " << it->first
 509    :                  << "of block \"" << block_->name() << "\" of size "
 510    :                  << block_->size() << ".";
 511  i :          return false;
 512    :        }
 513    :  
 514    :        // If a non-data label was already encountered, and now there's another
 515    :        // data label then bail: the block does not respect the 'code first,
 516    :        // data second' supported layout requirement.
 517  E :        if (saw_non_data_label) {
 518  E :          VLOG(1) << "Block \"" << block_->name() << "\" has an unsupported "
 519    :                  << "code-data layout.";
 520  E :          VLOG(1) << "Unexpected data label at offset " << it->first << ".";
 521  E :          return false;
 522    :        }
 523    :  
 524    :        // Create a data block and update the end-of-code offset. This should
 525    :        // never fail because this is the first time blocks are being created and
 526    :        // they are strictly non-overlapping by the iteration logic of this
 527    :        // function.
 528  E :        size_t size = code_end - it->first;
 529    :        CHECK(InsertBasicBlockRange(it->first, size,
 530  E :                                    BasicBlock::BASIC_DATA_BLOCK));
 531  E :        code_end = it->first;
 532  E :      } else {
 533    :        // We ignore the debug-end label, as it can come after block data.
 534  E :        if (label.attributes() == BlockGraph::DEBUG_END_LABEL)
 535  E :          continue;
 536    :  
 537    :        // Remember that a non-data label was seen. No further data labels should
 538    :        // be encountered.
 539  E :        saw_non_data_label = true;
 540    :      }
 541  E :    }
 542    :  
 543  E :    *end = code_end;
 544    :  
 545  E :    return true;
 546  E :  }
 547    :  
 548  E :  bool BasicBlockDecomposer::ParseInstructions() {
 549    :    // Find the beginning and ending offsets of code bytes within the block.
 550  E :    Offset code_end_offset = 0;
 551  E :    if (!GetCodeRangeAndCreateDataBasicBlocks(&code_end_offset))
 552  E :      return false;
 553    :  
 554    :    // Initialize jump_targets_ to include un-discoverable targets.
 555  E :    InitJumpTargets(code_end_offset);
 556    :  
 557    :    // Disassemble the instruction stream into rudimentary basic blocks.
 558  E :    Offset offset = 0;
 559  E :    current_block_start_ = offset;
 560  E :    while (offset < code_end_offset) {
 561    :      // Decode the next instruction.
 562  E :      Instruction instruction;
 563  E :      if (!DecodeInstruction(offset, code_end_offset, &instruction))
 564  i :        return false;
 565    :  
 566    :      // Handle the decoded instruction.
 567  E :      if (!HandleInstruction(instruction, offset))
 568  i :        return false;
 569    :  
 570    :      // Advance the instruction offset.
 571  E :      offset += instruction.size();
 572  E :    }
 573    :  
 574    :    // If we get here then we must have successfully consumed the entire code
 575    :    // range; otherwise, we should have failed to decode a partial instruction.
 576  E :    CHECK_EQ(offset, code_end_offset);
 577    :  
 578    :    // If the last bb we were working on didn't end with a RET or branch then
 579    :    // we need to close it now. We can detect this if the current_block_start_
 580    :    // does not match the current (end) offset.
 581  E :    if (current_block_start_ != code_end_offset)
 582  E :      EndCurrentBasicBlock(code_end_offset);
 583    :  
 584  E :    return true;
 585  E :  }
 586    :  
 587  E :  bool BasicBlockDecomposer::Disassemble() {
 588    :    // Parse the code bytes into instructions and rudimentary basic blocks.
 589  E :    if (!ParseInstructions())
 590  E :      return false;
 591    :  
 592    :    // Everything below this point is simply book-keeping that can't fail. These
 593    :    // can safely be skipped in a dry-run.
 594  E :    if (scratch_subgraph_.get() != NULL)
 595  E :      return true;
 596    :  
 597    :    // Split the basic blocks at branch targets.
 598  E :    SplitCodeBlocksAtBranchTargets();
 599    :  
 600    :    // By this point, we should have basic blocks for all visited code.
 601  E :    CheckAllJumpTargetsStartABasicCodeBlock();
 602    :  
 603    :    // We should now have contiguous block ranges that cover every byte in the
 604    :    // macro block. Verify that this is so.
 605  E :    CheckHasCompleteBasicBlockCoverage();
 606    :  
 607    :    // We should have propagated all of the labels in the original block into
 608    :    // the basic-block subgraph.
 609  E :    CheckAllLabelsArePreserved();
 610    :  
 611    :    // Populate the referrers in the basic block data structures by copying
 612    :    // them from the original source block.
 613  E :    CopyExternalReferrers();
 614    :  
 615    :    // Populate the references in the basic block data structures by copying
 616    :    // them from the original source block. This does not handle the successor
 617    :    // references.
 618  E :    CopyReferences();
 619    :  
 620    :    // Wire up the basic-block successors. These are not handled by
 621    :    // CopyReferences(), above.
 622  E :    ResolveSuccessors();
 623    :  
 624    :    // All the control flow we have derived should be valid.
 625  E :    CheckAllControlFlowIsValid();
 626    :  
 627    :    // Mark all unreachable code blocks as padding.
 628  E :    MarkUnreachableCodeAsPadding();
 629    :  
 630    :    // ... and we're done.
 631  E :    return true;
 632  E :  }
 633    :  
 634  E :  void BasicBlockDecomposer::CheckAllJumpTargetsStartABasicCodeBlock() const {
 635  E :    if (!check_decomposition_results_)
 636  i :      return;
 637    :  
 638  E :    JumpTargets::const_iterator offset_iter(jump_targets_.begin());
 639  E :    for (; offset_iter != jump_targets_.end(); ++offset_iter) {
 640    :      // The target basic-block should be a code basic-block.
 641  E :      BasicBlock* target_bb = GetBasicBlockAt(*offset_iter);
 642  E :      CHECK(target_bb != NULL);
 643  E :      CHECK_EQ(BasicBlock::BASIC_CODE_BLOCK, target_bb->type());
 644  E :    }
 645  E :  }
 646    :  
 647  E :  void BasicBlockDecomposer::CheckHasCompleteBasicBlockCoverage() const {
 648  E :    if (!check_decomposition_results_)
 649  i :      return;
 650    :  
 651    :    // Walk through the basic-block address space.
 652  E :    Offset next_start = 0;
 653  E :    RangeMapConstIter it(original_address_space_.begin());
 654  E :    for (; it != original_address_space_.end(); ++it) {
 655  E :      CHECK_EQ(it->first.start(), next_start);
 656  E :      CHECK_EQ(it->first.start(), it->second->offset());
 657    :  
 658  E :      BasicDataBlock* data_block = BasicDataBlock::Cast(it->second);
 659  E :      if (data_block != NULL) {
 660    :        // Data block's size should match the address segment exactly.
 661  E :        CHECK_EQ(it->first.size(), data_block->size());
 662    :      }
 663  E :      BasicCodeBlock* code_block = BasicCodeBlock::Cast(it->second);
 664  E :      if (code_block != NULL) {
 665    :        // Code blocks may be short the trailing successor instruction.
 666    :        BasicCodeBlock::Successors::const_iterator succ_it(
 667  E :            code_block->successors().begin());
 668  E :        Size block_size = code_block->GetInstructionSize();
 669  E :        for (; succ_it != code_block->successors().end(); ++succ_it)
 670  E :          block_size += succ_it->instruction_size();
 671    :  
 672  E :        CHECK_GE(it->first.size(), block_size);
 673    :      }
 674  E :      next_start += it->first.size();
 675  E :    }
 676    :  
 677    :    // At this point, if there were no gaps, next start will be the same as the
 678    :    // full size of the block we're decomposing.
 679  E :    CHECK_EQ(block_->size(), static_cast<size_t>(next_start));
 680  E :  }
 681    :  
 682  E :  void BasicBlockDecomposer::CheckAllControlFlowIsValid() const {
 683  E :    if (!check_decomposition_results_)
 684  i :      return;
 685    :  
 686    :    // Check that the subgraph is valid. This will make sure that the
 687    :    // instructions and successors generally make sense.
 688  E :    CHECK(subgraph_->IsValid());
 689    :  
 690    :    // The only thing left to check is that synthesized flow-through
 691    :    // successors refer to the adjacent basic-blocks.
 692  E :    RangeMapConstIter it(original_address_space_.begin());
 693  E :    for (; it != original_address_space_.end(); ++it) {
 694  E :      const BasicCodeBlock* bb = BasicCodeBlock::Cast(it->second);
 695  E :      if (bb == NULL)
 696  E :        continue;
 697    :  
 698  E :      const BasicBlock::Successors& successors = bb->successors();
 699    :  
 700    :      // There may be at most 2 successors.
 701  E :      switch (successors.size()) {
 702    :        case 0:
 703  E :          break;
 704    :  
 705    :        case 1:
 706    :          // If the successor is synthesized, then flow is from this basic-block
 707    :          // to the next adjacent one.
 708  E :          if (successors.back().instruction_size() == 0) {
 709  E :            RangeMapConstIter next(it);
 710  E :            ++next;
 711  E :            CHECK(next != original_address_space_.end());
 712  E :            CHECK_EQ(successors.back().reference().basic_block(), next->second);
 713    :          }
 714  E :          break;
 715    :  
 716    :        case 2: {
 717    :          // Exactly one of the successors should have been synthesized.
 718  E :          bool front_synthesized = successors.front().instruction_size() == 0;
 719  E :          bool back_synthesized = successors.back().instruction_size() == 0;
 720  E :          CHECK_NE(front_synthesized, back_synthesized);
 721    :  
 722    :          // The synthesized successor flows from this basic-block to the next
 723    :          // adjacent one.
 724    :          const Successor& synthesized =
 725  E :              front_synthesized ? successors.front() : successors.back();
 726  E :          RangeMapConstIter next(it);
 727  E :          ++next;
 728  E :          CHECK(next != original_address_space_.end());
 729  E :          CHECK_EQ(synthesized.reference().basic_block(), next->second);
 730  E :          break;
 731    :        }
 732    :  
 733    :        default:
 734  i :          NOTREACHED();
 735    :      }
 736  E :    }
 737  E :  }
 738    :  
 739  E :  void BasicBlockDecomposer::CheckAllLabelsArePreserved() const {
 740  E :    if (!check_decomposition_results_)
 741  i :      return;
 742    :  
 743  E :    const Block* original_block = subgraph_->original_block();
 744  E :    if (original_block == NULL)
 745  i :      return;
 746    :  
 747    :    // Remove any labels that fall *after* the given block. This can happen for
 748    :    // scope and debug-end labels when the function has no epilog. It is rare, but
 749    :    // has been observed in the wild.
 750    :    // TODO(chrisha): Find a way to preserve these. We may need the notion of an
 751    :    //     empty basic-block which gets assigned the label, or we may need to
 752    :    //     augment BBs/instructions with the ability to have two labels: one tied
 753    :    //     to the beginning of the object, and one to the end.
 754    :    Block::LabelMap::const_iterator it_past_block_end =
 755  E :        original_block->labels().lower_bound(original_block->size());
 756    :  
 757    :    // Grab a copy of the original labels (except any that are beyond the end of
 758    :    // the block data). We will be matching against these to ensure that they are
 759    :    // preserved in the BB decomposition.
 760    :    const Block::LabelMap original_labels(original_block->labels().begin(),
 761  E :                                          it_past_block_end);
 762  E :    if (original_labels.empty())
 763  E :      return;
 764    :  
 765    :    // A map to track which labels (by offset) have been found in the subgraph.
 766  E :    std::map<Offset, bool> labels_found;
 767    :  
 768    :    // Initialize the map of labels found in the subgraph.
 769  E :    Block::LabelMap::const_iterator label_iter = original_labels.begin();
 770  E :    for (; label_iter != original_labels.end(); ++label_iter)
 771  E :      labels_found.insert(std::make_pair(label_iter->first, false));
 772    :  
 773    :    // Walk through the subgraph and mark all of the labels found.
 774    :    BasicBlockSubGraph::BBCollection::const_iterator bb_iter =
 775  E :        subgraph_->basic_blocks().begin();
 776  E :    for (; bb_iter != subgraph_->basic_blocks().end(); ++bb_iter) {
 777  E :      const BasicDataBlock* data_block = BasicDataBlock::Cast(*bb_iter);
 778  E :      if (data_block != NULL) {
 779    :        // Account for labels attached to basic-blocks.
 780  E :        if (data_block->has_label()) {
 781  E :          BlockGraph::Label label;
 782  E :          CHECK(original_block->GetLabel(data_block->offset(), &label));
 783  E :          CHECK(data_block->label() == label);
 784  E :          labels_found[data_block->offset()] = true;
 785  E :        }
 786    :      }
 787    :  
 788  E :      const BasicCodeBlock* code_block = BasicCodeBlock::Cast(*bb_iter);
 789  E :      if (code_block != NULL) {
 790    :        // Account for labels attached to instructions.
 791    :        BasicBlock::Instructions::const_iterator inst_iter =
 792  E :            code_block->instructions().begin();
 793  E :        Offset inst_offset = code_block->offset();
 794  E :        for (; inst_iter != code_block->instructions().end(); ++inst_iter) {
 795  E :          const Instruction& inst = *inst_iter;
 796  E :          if (inst.has_label()) {
 797  E :            BlockGraph::Label label;
 798  E :            CHECK(original_block->GetLabel(inst_offset, &label));
 799  E :            CHECK(inst.label() == label);
 800  E :            labels_found[inst_offset] = true;
 801  E :          }
 802  E :          inst_offset += inst.size();
 803  E :        }
 804    :  
 805    :        // Account for labels attached to successors.
 806    :        BasicBlock::Successors::const_iterator succ_iter =
 807  E :            code_block->successors().begin();
 808  E :        for (; succ_iter != code_block->successors().end(); ++succ_iter) {
 809  E :          const Successor& succ = *succ_iter;
 810  E :          if (succ.has_label()) {
 811  E :            BlockGraph::Label label;
 812  E :            CHECK_NE(0U, succ.instruction_size());
 813  E :            CHECK(original_block->GetLabel(inst_offset, &label));
 814  E :            CHECK(succ.label() == label);
 815  E :            labels_found[inst_offset] = true;
 816  E :          }
 817  E :          inst_offset += succ.instruction_size();
 818  E :        }
 819    :      }
 820  E :    }
 821    :  
 822    :    // We should have the right number of labels_found (check if we added
 823    :    // something to the wrong place).
 824  E :    CHECK_EQ(original_labels.size(), labels_found.size());
 825    :  
 826    :    // Make sure all of the items in labels_found have been set to true.
 827  E :    std::map<Offset, bool>::const_iterator found_iter = labels_found.begin();
 828  E :    for (; found_iter != labels_found.end(); ++found_iter) {
 829  E :      CHECK(found_iter->second);
 830  E :    }
 831  E :  }
 832    :  
 833    :  bool BasicBlockDecomposer::InsertBasicBlockRange(Offset offset,
 834    :                                                   size_t size,
 835  E :                                                   BasicBlockType type) {
 836  E :    DCHECK_LE(0, offset);
 837  E :    DCHECK_LT(0U, size);
 838  E :    DCHECK_LE(offset + size, block_->size());
 839  E :    DCHECK(type == BasicBlock::BASIC_CODE_BLOCK || current_instructions_.empty());
 840  E :    DCHECK(type == BasicBlock::BASIC_CODE_BLOCK || current_successors_.empty());
 841    :  
 842    :    // Find or create a name for this basic block. Reserve the label, if any,
 843    :    // to propagate to the basic block if there are no instructions in the
 844    :    // block to carry the label(s).
 845  E :    BlockGraph::Label label;
 846  E :    std::string basic_block_name;
 847  E :    if (block_->GetLabel(offset, &label)) {
 848  E :      basic_block_name = label.ToString();
 849  E :    } else {
 850    :      basic_block_name =
 851    :          base::StringPrintf("<%s+%04X-%s>",
 852    :                             block_->name().c_str(),
 853    :                             offset,
 854  E :                             BasicBlock::BasicBlockTypeToString(type));
 855    :    }
 856    :  
 857    :    // Pre-flight address space insertion to make sure there's no
 858    :    // pre-existing conflicting range.
 859  E :    Range byte_range(offset, size);
 860    :    if (original_address_space_.FindFirstIntersection(byte_range) !=
 861  E :            original_address_space_.end()) {
 862  i :      LOG(ERROR) << "Attempted to insert overlapping basic block.";
 863  i :      return false;
 864    :    }
 865    :  
 866  E :    if (type == BasicBlock::BASIC_CODE_BLOCK) {
 867    :      // Create the code block.
 868  E :      BasicCodeBlock* code_block = subgraph_->AddBasicCodeBlock(basic_block_name);
 869  E :      if (code_block == NULL)
 870  i :        return false;
 871  E :      CHECK(original_address_space_.Insert(byte_range, code_block));
 872    :  
 873    :      // Populate code basic-block with instructions and successors.
 874  E :      code_block->set_offset(offset);
 875  E :      code_block->instructions().swap(current_instructions_);
 876  E :      code_block->successors().swap(current_successors_);
 877  E :    } else {
 878  E :      DCHECK(type == BasicBlock::BASIC_DATA_BLOCK);
 879    :  
 880    :      // Create the data block.
 881    :      BasicDataBlock* data_block = subgraph_->AddBasicDataBlock(
 882  E :          basic_block_name, size, block_->data() + offset);
 883  E :      if (data_block == NULL)
 884  i :        return false;
 885  E :      CHECK(original_address_space_.Insert(byte_range, data_block));
 886    :  
 887    :      // Capture the source range (if any) for the data block.
 888  E :      data_block->set_source_range(GetSourceRange(offset, size));
 889    :  
 890    :      // Data basic-blocks carry their labels at the head of the basic blocks.
 891    :      // A padding basic-block might also be labeled if the block contains
 892    :      // unreachable code (for example, INT3 or NOP instructions following a call
 893    :      // to a non-returning function).
 894  E :      data_block->set_offset(offset);
 895  E :      data_block->set_label(label);
 896    :    }
 897    :  
 898  E :    return true;
 899  E :  }
 900    :  
 901  E :  void BasicBlockDecomposer::SplitCodeBlocksAtBranchTargets() {
 902  E :    JumpTargets::const_iterator jump_target_iter(jump_targets_.begin());
 903  E :    for (; jump_target_iter != jump_targets_.end(); ++jump_target_iter) {
 904    :      // Resolve the target basic-block.
 905  E :      Offset target_offset = *jump_target_iter;
 906  E :      BasicBlock* target_bb = NULL;
 907  E :      Range target_bb_range;
 908  E :      CHECK(FindBasicBlock(target_offset, &target_bb, &target_bb_range));
 909    :  
 910    :      // If we're jumping to the start of a basic block, there isn't any work
 911    :      // to do.
 912  E :      if (target_offset == target_bb_range.start())
 913  E :        continue;
 914    :  
 915    :      // The target must be a code block.
 916  E :      BasicCodeBlock* target_code_block = BasicCodeBlock::Cast(target_bb);
 917  E :      CHECK(target_code_block != NULL);
 918    :  
 919    :      // Otherwise, we have found a basic-block that we need to split.
 920    :      // Let's contract the range the original occupies in the basic-block
 921    :      // address space, then add a second block at the target offset.
 922  E :      size_t left_split_size = target_offset - target_bb_range.start();
 923  E :      bool removed = original_address_space_.Remove(target_bb_range);
 924  E :      DCHECK(removed);
 925    :  
 926  E :      Range left_split_range(target_bb_range.start(), left_split_size);
 927    :      bool inserted =
 928  E :          original_address_space_.Insert(left_split_range, target_code_block);
 929  E :      DCHECK(inserted);
 930    :  
 931    :      // Now we split up containing_range into two new ranges and replace
 932    :      // containing_range with the two new entries.
 933    :  
 934    :      // Slice the trailing half of the instructions and the successors
 935    :      // off the block.
 936  E :      DCHECK(current_instructions_.empty());
 937  E :      DCHECK(current_successors_.empty());
 938    :      bool split = SplitInstructionListAt(left_split_size,
 939    :                                          &target_code_block->instructions(),
 940  E :                                          &current_instructions_);
 941  E :      DCHECK(split);
 942  E :      target_code_block->successors().swap(current_successors_);
 943    :  
 944    :      // Set-up the flow-through successor for the first "half".
 945    :      BasicBlockReference ref(BlockGraph::PC_RELATIVE_REF,
 946    :                              1,  // Size is immaterial in successors.
 947    :                              const_cast<Block*>(block_),
 948    :                              target_offset,
 949  E :                              target_offset);
 950    :      target_code_block->successors().push_back(
 951  E :          Successor(Successor::kConditionTrue, ref, 0));
 952    :  
 953    :      // This shouldn't fail because the range used to exist, and we just resized
 954    :      // it.
 955    :      CHECK(InsertBasicBlockRange(target_offset,
 956    :                                  target_bb_range.size() - left_split_size,
 957  E :                                  target_code_block->type()));
 958  E :    }
 959  E :  }
 960    :  
 961  E :  void BasicBlockDecomposer::CopyExternalReferrers() {
 962  E :    const BlockGraph::Block::ReferrerSet& referrers = block_->referrers();
 963  E :    BlockGraph::Block::ReferrerSet::const_iterator iter = referrers.begin();
 964  E :    for (; iter != referrers.end(); ++iter) {
 965    :      // Find the reference this referrer record describes.
 966  E :      const BlockGraph::Block* referrer = iter->first;
 967  E :      DCHECK(referrer != NULL);
 968    :  
 969    :      // We only care about external referrers.
 970  E :      if (referrer == block_)
 971  E :        continue;
 972    :  
 973    :      // This is an external referrer. Find the reference in the referring block.
 974  E :      Offset source_offset = iter->second;
 975  E :      BlockGraph::Reference reference;
 976  E :      bool found = referrer->GetReference(source_offset, &reference);
 977  E :      DCHECK(found);
 978    :  
 979    :      // Find the basic block the reference refers to.
 980  E :      BasicBlock* target_bb = GetBasicBlockAt(reference.base());
 981  E :      DCHECK(target_bb != NULL);
 982    :  
 983    :      // Insert the referrer into the target bb's referrer set. Note that there
 984    :      // is no corresponding reference update to the referring block. The
 985    :      // target bb will track these so a BlockBuilder can properly update
 986    :      // the referrers when merging a subgraph back into the block-graph.
 987    :      bool inserted = target_bb->referrers().insert(
 988  E :          BasicBlockReferrer(referrer, source_offset)).second;
 989  E :      DCHECK(inserted);
 990  E :    }
 991  E :  }
 992    :  
 993    :  void BasicBlockDecomposer::CopyReferences(
 994  E :      Offset item_offset, Size item_size, BasicBlockReferenceMap* refs) {
 995  E :    DCHECK_LE(0, item_offset);
 996  E :    DCHECK_LT(0U, item_size);
 997  E :    DCHECK(refs != NULL);
 998    :  
 999    :    // Figure out the bounds of item.
1000  E :    BlockGraph::Offset end_offset = item_offset + item_size;
1001    :  
1002    :    // Get iterators encompassing all references within the bounds of item.
1003    :    BlockGraph::Block::ReferenceMap::const_iterator ref_iter =
1004  E :       block_->references().lower_bound(item_offset);
1005    :    BlockGraph::Block::ReferenceMap::const_iterator end_iter =
1006  E :       block_->references().lower_bound(end_offset);
1007    :  
1008  E :    for (; ref_iter != end_iter; ++ref_iter) {
1009    :      // Calculate the local offset of this reference within item.
1010  E :      BlockGraph::Offset local_offset = ref_iter->first - item_offset;
1011  E :      const BlockGraph::Reference& reference = ref_iter->second;
1012    :  
1013    :      // We expect long references for everything except flow control.
1014  E :      CHECK_EQ(4U, reference.size());
1015  E :      DCHECK_LE(local_offset + reference.size(), static_cast<Size>(end_offset));
1016    :  
1017  E :      if (reference.referenced() != block_) {
1018    :        // For external references, we can directly reference the other block.
1019    :        bool inserted = refs->insert(std::make_pair(
1020    :              local_offset,
1021    :              BasicBlockReference(reference.type(), reference.size(),
1022    :                                  reference.referenced(), reference.offset(),
1023  E :                                  reference.base()))).second;
1024  E :        DCHECK(inserted);
1025  E :      } else {
1026    :        // For intra block_ references, find the corresponding basic block in
1027    :        // the basic block address space.
1028  E :        BasicBlock* target_bb = GetBasicBlockAt(reference.base());
1029  E :        DCHECK(target_bb != NULL);
1030    :  
1031    :        // Create target basic-block relative values for the base and offset.
1032    :        // TODO(chrisha): Make BasicBlockReferences handle indirect references.
1033  E :        CHECK_EQ(reference.offset(), reference.base());
1034    :  
1035    :        // Insert a reference to the target basic block.
1036    :        bool inserted = refs->insert(std::make_pair(
1037    :            local_offset,
1038    :            BasicBlockReference(reference.type(),
1039    :                                reference.size(),
1040  E :                                target_bb))).second;
1041  E :        DCHECK(inserted);
1042    :      }
1043  E :    }
1044  E :  }
1045    :  
1046  E :  void BasicBlockDecomposer::CopyReferences() {
1047    :    // Copy the references for the source range of each basic-block (by
1048    :    // instruction for code basic-blocks). External referrers and successors are
1049    :    // handled in separate passes.
1050    :    BasicBlockSubGraph::BBCollection::iterator bb_iter =
1051  E :        subgraph_->basic_blocks().begin();
1052  E :    for (; bb_iter != subgraph_->basic_blocks().end(); ++bb_iter) {
1053  E :      BasicCodeBlock* code_block = BasicCodeBlock::Cast(*bb_iter);
1054  E :      if (code_block != NULL) {
1055  E :        DCHECK_EQ(BasicBlock::BASIC_CODE_BLOCK, code_block->type());
1056    :  
1057  E :        Offset inst_offset = code_block->offset();
1058    :        BasicBlock::Instructions::iterator inst_iter =
1059  E :            code_block->instructions().begin();
1060  E :        for (; inst_iter != code_block->instructions().end(); ++inst_iter) {
1061    :          CopyReferences(inst_offset,
1062    :                         inst_iter->size(),
1063  E :                         &inst_iter->references());
1064  E :          inst_offset += inst_iter->size();
1065  E :        }
1066    :      }
1067    :  
1068  E :      BasicDataBlock* data_block = BasicDataBlock::Cast(*bb_iter);
1069  E :      if (data_block != NULL) {
1070  E :        DCHECK_NE(BasicBlock::BASIC_CODE_BLOCK, data_block->type());
1071    :        CopyReferences(data_block->offset(),
1072    :                       data_block->size(),
1073  E :                       &data_block->references());
1074    :      }
1075  E :    }
1076  E :  }
1077    :  
1078  E :  void BasicBlockDecomposer::ResolveSuccessors() {
1079    :    BasicBlockSubGraph::BBCollection::iterator bb_iter =
1080  E :        subgraph_->basic_blocks().begin();
1081  E :    for (; bb_iter != subgraph_->basic_blocks().end(); ++bb_iter) {
1082    :      // Only code basic-blocks have successors and instructions.
1083  E :      BasicCodeBlock* code_block = BasicCodeBlock::Cast(*bb_iter);
1084  E :      if (code_block == NULL)
1085  E :        continue;
1086    :  
1087    :      BasicBlock::Successors::iterator succ_iter =
1088  E :          code_block->successors().begin();
1089    :      BasicBlock::Successors::iterator succ_iter_end =
1090  E :          code_block->successors().end();
1091  E :      for (; succ_iter != succ_iter_end; ++succ_iter) {
1092  E :        if (succ_iter->reference().block() != block_)
1093  E :          continue;
1094    :  
1095    :        // Find the basic block the successor references.
1096    :        BasicBlock* target_code_block =
1097  E :            GetBasicBlockAt(succ_iter->reference().offset());
1098  E :        DCHECK(target_code_block != NULL);
1099    :  
1100    :        // We transform all successor branches into 4-byte pc-relative targets.
1101    :        succ_iter->set_reference(
1102    :            BasicBlockReference(
1103  E :                BlockGraph::PC_RELATIVE_REF, 4, target_code_block));
1104  E :        DCHECK(succ_iter->reference().IsValid());
1105  E :      }
1106  E :    }
1107  E :  }
1108    :  
1109  E :  void BasicBlockDecomposer::MarkUnreachableCodeAsPadding() {
1110  E :    BasicBlockSubGraph::ReachabilityMap rm;
1111  E :    subgraph_->GetReachabilityMap(&rm);
1112  E :    DCHECK_EQ(rm.size(), subgraph_->basic_blocks().size());
1113    :    BasicBlockSubGraph::BBCollection::iterator bb_iter =
1114  E :        subgraph_->basic_blocks().begin();
1115  E :    for (; bb_iter != subgraph_->basic_blocks().end(); ++bb_iter) {
1116  E :      BasicCodeBlock* code_bb = BasicCodeBlock::Cast(*bb_iter);
1117  E :      if (code_bb != NULL) {
1118  E :        if (!subgraph_->IsReachable(rm, code_bb))
1119  E :          code_bb->MarkAsPadding();
1120    :      }
1121  E :    }
1122  E :  }
1123    :  
1124    :  }  // namespace block_graph

Coverage information generated Wed Dec 11 11:34:16 2013.