Coverage for /Syzygy/block_graph/basic_block_decomposer.cc

CoverageLines executed / instrumented / missingexe / inst / missLanguageGroup
92.1%5145580.C++source

Line-by-line coverage:

   1    :  // Copyright 2012 Google Inc. All Rights Reserved.
   2    :  //
   3    :  // Licensed under the Apache License, Version 2.0 (the "License");
   4    :  // you may not use this file except in compliance with the License.
   5    :  // You may obtain a copy of the License at
   6    :  //
   7    :  //     http://www.apache.org/licenses/LICENSE-2.0
   8    :  //
   9    :  // Unless required by applicable law or agreed to in writing, software
  10    :  // distributed under the License is distributed on an "AS IS" BASIS,
  11    :  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12    :  // See the License for the specific language governing permissions and
  13    :  // limitations under the License.
  14    :  //
  15    :  // Implementation of basic block decomposer.
  16    :  
  17    :  #include "syzygy/block_graph/basic_block_decomposer.h"
  18    :  
  19    :  #include <algorithm>
  20    :  #include <vector>
  21    :  
  22    :  #include "base/logging.h"
  23    :  #include "base/stringprintf.h"
  24    :  #include "syzygy/block_graph/basic_block.h"
  25    :  #include "syzygy/block_graph/basic_block_subgraph.h"
  26    :  #include "syzygy/block_graph/block_graph.h"
  27    :  #include "syzygy/block_graph/block_util.h"
  28    :  
  29    :  #include "mnemonics.h"  // NOLINT
  30    :  
  31    :  namespace block_graph {
  32    :  
  33    :  namespace {
  34    :  
  35    :  using block_graph::BasicBlock;
  36    :  using block_graph::BasicBlockReference;
  37    :  using block_graph::BasicBlockReferrer;
  38    :  using block_graph::BasicBlockSubGraph;
  39    :  using block_graph::BlockGraph;
  40    :  using block_graph::Instruction;
  41    :  using block_graph::Successor;
  42    :  using core::Disassembler;
  43    :  
  44    :  typedef BlockGraph::Block Block;
  45    :  typedef BlockGraph::Offset Offset;
  46    :  typedef BlockGraph::Size Size;
  47    :  typedef core::AddressSpace<Offset, size_t, BasicBlock*> BBAddressSpace;
  48    :  typedef BBAddressSpace::Range Range;
  49    :  typedef BBAddressSpace::RangeMap RangeMap;
  50    :  typedef BBAddressSpace::RangeMapConstIter RangeMapConstIter;
  51    :  typedef BBAddressSpace::RangeMapIter RangeMapIter;
  52    :  
  53    :  const size_t kPointerSize = BlockGraph::Reference::kMaximumSize;
  54    :  
  55    :  // We use a (somewhat) arbitrary value as the disassembly address for a block
  56    :  // so we can tell the difference between a reference to the beginning of the
  57    :  // block (offset=0) and a null address.
  58    :  const size_t kDisassemblyAddress = 65536;
  59    :  
  60    :  // Look up the reference made from an instruction's byte range within the
  61    :  // given block. The reference should start AFTER the instruction starts
  62    :  // and there should be exactly 1 reference in the byte range.
  63    :  // Returns true if the reference was found, false otherwise.
  64    :  bool GetReferenceOfInstructionAt(const Block* block,
  65    :                                   Offset instr_offset,
  66    :                                   Size instr_size,
  67  E :                                   BlockGraph::Reference* ref) {
  68  E :    DCHECK(block != NULL);
  69  E :    DCHECK_LE(0, instr_offset);
  70  E :    DCHECK_LT(0U, instr_size);
  71  E :    DCHECK(ref != NULL);
  72    :  
  73    :    // Find the first reference following the instruction offset.
  74    :    Block::ReferenceMap::const_iterator ref_iter =
  75  E :        block->references().upper_bound(instr_offset);
  76    :  
  77    :    // If no reference is found then we're done.
  78  E :    if (ref_iter == block->references().end())
  79  E :      return false;
  80    :  
  81    :    // If the reference occurs outside the instruction then we're done.
  82  E :    Offset next_instr_offset = instr_offset + instr_size;
  83  E :    if (ref_iter->first >= next_instr_offset)
  84  E :      return false;
  85    :  
  86    :    // Otherwise, the reference should fit into the instruction.
  87    :    CHECK_LE(static_cast<size_t>(next_instr_offset),
  88  E :             ref_iter->first + ref_iter->second.size());
  89    :  
  90    :    // And it should be the only reference in the instruction.
  91  E :    if (ref_iter != block->references().begin()) {
  92  E :      Block::ReferenceMap::const_iterator prev_iter = ref_iter;
  93  E :      --prev_iter;
  94    :      CHECK_GE(static_cast<size_t>(instr_offset),
  95  E :               prev_iter->first + prev_iter->second.size());
  96    :    }
  97  E :    Block::ReferenceMap::const_iterator next_iter = ref_iter;
  98  E :    ++next_iter;
  99    :    CHECK(next_iter == block->references().end() ||
 100  E :          next_iter->first >= next_instr_offset);
 101    :  
 102  E :    *ref = ref_iter->second;
 103  E :    return true;
 104  E :  }
 105    :  
 106    :  // Transfer instructions from original to tail, starting with the instruction
 107    :  // starting at offset.
 108    :  bool SplitInstructionListAt(Offset offset,
 109    :                              BasicBlock::Instructions* original,
 110  E :                              BasicBlock::Instructions* tail) {
 111  E :    DCHECK(original != NULL);
 112  E :    DCHECK(tail != NULL && tail->empty());
 113    :  
 114  E :    BasicBlock::Instructions::iterator it(original->begin());
 115  E :    while (offset > 0 && it != original->end()) {
 116  E :      offset -= it->size();
 117  E :      ++it;
 118  E :    }
 119    :  
 120    :    // Did we terminate at an instruction boundary?
 121  E :    if (offset != 0)
 122  i :      return false;
 123    :  
 124  E :    tail->splice(tail->end(), *original, it, original->end());
 125  E :    return true;
 126  E :  }
 127    :  
 128  E :  bool GetCodeRange(const BlockGraph::Block* block, Offset* begin, Offset* end) {
 129  E :    DCHECK(block != NULL);
 130  E :    DCHECK(begin != NULL);
 131  E :    DCHECK(end != NULL);
 132  E :    DCHECK_EQ(BlockGraph::CODE_BLOCK, block->type());
 133    :  
 134    :    // By default, we assume the entire block is code.
 135  E :    *begin = 0;
 136  E :    *end = block->size();
 137    :  
 138    :    // We then move up the end offset if the block ends in data.
 139    :    BlockGraph::Block::LabelMap::const_reverse_iterator it =
 140  E :        block->labels().rbegin();
 141  E :    for (; it != block->labels().rend(); ++it) {
 142  E :      const BlockGraph::Label& label = it->second;
 143  E :      if (!label.has_attributes(BlockGraph::DATA_LABEL))
 144  E :        break;
 145  E :      *end = it->first;
 146  E :    }
 147    :  
 148  E :    return TRUE;
 149  E :  }
 150    :  
 151    :  }  // namespace
 152    :  
 153    :  BasicBlockDecomposer::BasicBlockDecomposer(const BlockGraph::Block* block,
 154    :                                             BasicBlockSubGraph* subgraph)
 155    :      : block_(block),
 156    :        subgraph_(subgraph),
 157    :        current_block_start_(0),
 158  E :        check_decomposition_results_(true) {
 159    :    // TODO(rogerm): Once we're certain this is stable for all input binaries
 160    :    //     turn on check_decomposition_results_ by default only ifndef NDEBUG.
 161  E :    DCHECK(block != NULL);
 162  E :    DCHECK(block->type() == BlockGraph::CODE_BLOCK);
 163  E :    DCHECK(CodeBlockAttributesAreBasicBlockSafe(block));
 164  E :    DCHECK(subgraph != NULL);
 165  E :  }
 166    :  
 167  E :  bool BasicBlockDecomposer::Decompose() {
 168  E :    DCHECK(subgraph_->basic_blocks().empty());
 169  E :    DCHECK(subgraph_->block_descriptions().empty());
 170  E :    DCHECK(original_address_space_.empty());
 171  E :    subgraph_->set_original_block(block_);
 172    :  
 173  E :    if (!Disassemble())
 174  i :      return false;
 175    :  
 176    :    typedef BasicBlockSubGraph::BlockDescription BlockDescription;
 177  E :    subgraph_->block_descriptions().push_back(BlockDescription());
 178  E :    BlockDescription& desc = subgraph_->block_descriptions().back();
 179  E :    desc.name = block_->name();
 180  E :    desc.type = block_->type();
 181  E :    desc.alignment = block_->alignment();
 182  E :    desc.attributes = block_->attributes();
 183  E :    desc.section = block_->section();
 184    :  
 185    :    // Add the basic blocks to the block descriptor.
 186  E :    Offset offset = 0;
 187  E :    RangeMapConstIter it = original_address_space_.begin();
 188  E :    for (; it != original_address_space_.end(); ++it) {
 189  E :      DCHECK_EQ(it->first.start(), offset);
 190  E :      desc.basic_block_order.push_back(it->second);
 191    :  
 192    :      // Any data basic blocks (jump and case tables) with 0 mod 4 alignment
 193    :      // are marked so that the alignment is preserved by the block builder.
 194    :      if (desc.alignment >= kPointerSize &&
 195    :          it->second->type() == BasicBlock::BASIC_DATA_BLOCK &&
 196  E :          (offset % kPointerSize) == 0) {
 197  E :        it->second->set_alignment(kPointerSize);
 198    :      }
 199    :  
 200  E :      offset += it->first.size();
 201  E :    }
 202    :  
 203  E :    return true;
 204  E :  }
 205    :  
 206    :  bool BasicBlockDecomposer::DecodeInstruction(Offset offset,
 207    :                                               Offset code_end_offset,
 208  E :                                               Instruction* instruction) const {
 209    :    // The entire offset range should fall within the extent of block_ and the
 210    :    // output instruction pointer must not be NULL.
 211  E :    DCHECK_LE(0, offset);
 212  E :    DCHECK_LT(offset, code_end_offset);
 213  E :    DCHECK_LE(static_cast<Size>(code_end_offset), block_->size());
 214  E :    DCHECK(instruction != NULL);
 215    :  
 216    :    // Decode the instruction.
 217  E :    const uint8* buffer = block_->data() + offset;
 218  E :    size_t max_length = code_end_offset - offset;
 219  E :    if (!Instruction::FromBuffer(buffer, max_length, instruction)) {
 220  i :      LOG(ERROR) << "Failed to decode instruction at offset " << offset
 221    :                 << " of block '" << block_->name() << "'.";
 222    :  
 223    :      // Dump the bytes to aid in debugging.
 224  i :      std::string dump;
 225  i :      size_t dump_length = std::min(max_length, Instruction::kMaxSize);
 226  i :      for (size_t i = 0; i < dump_length; ++i)
 227  i :        base::StringAppendF(&dump, " %02X", buffer[i]);
 228  i :      LOG(ERROR) << ".text =" << dump << (dump_length < max_length ? "..." : ".");
 229    :  
 230    :      // Return false to indicate an error.
 231  i :      return false;
 232    :    }
 233    :  
 234  E :    VLOG(3) << "Disassembled " << instruction->GetName()
 235    :            << " instruction (" << instruction->size()
 236    :            << " bytes) at offset " << offset << ".";
 237    :  
 238    :    // Track the source range.
 239    :    instruction->set_source_range(
 240  E :        GetSourceRange(offset, instruction->size()));
 241    :  
 242    :    // If the block is labeled, preserve the label.
 243  E :    BlockGraph::Label label;
 244  E :    if (block_->GetLabel(offset, &label)) {
 245    :      // If this instruction has run into known data, then we have a problem!
 246  E :      CHECK(!label.has_attributes(BlockGraph::DATA_LABEL))
 247    :          << "Disassembling into data at offset " << offset << " of "
 248    :          << block_->name() << ".";
 249  E :      instruction->set_label(label);
 250    :    }
 251    :  
 252  E :    return true;
 253  E :  }
 254    :  
 255    :  BasicBlockDecomposer::SourceRange BasicBlockDecomposer::GetSourceRange(
 256  E :      Offset offset, Size size) const {
 257    :    // Find the source range for the original bytes. We may not have a data
 258    :    // range for bytes that were synthesized in other transformations. As a
 259    :    // rule, however, there should be a covered data range for each instruction,
 260    :    // successor, that relates back to the original image.
 261    :    const Block::SourceRanges::RangePair* range_pair =
 262  E :        block_->source_ranges().FindRangePair(offset, size);
 263    :    // Return an empty range if we found nothing.
 264  E :    if (range_pair == NULL)
 265  E :      return SourceRange();
 266    :  
 267  E :    const Block::DataRange& data_range = range_pair->first;
 268  E :    const Block::SourceRange& source_range = range_pair->second;
 269  E :    if (offset == data_range.start() && size == data_range.size()) {
 270    :      // We match a data range exactly, so let's use the entire
 271    :      // matching source range.
 272  E :      return source_range;
 273    :    }
 274    :  
 275    :    // The data range doesn't match exactly, so let's slice the corresponding
 276    :    // source range. The assumption here is that no transformation will ever
 277    :    // slice the data or source ranges for an instruction, so we should always
 278    :    // have a covering data and source ranges.
 279  E :    DCHECK_GE(offset, data_range.start());
 280  E :    DCHECK_LE(offset + size, data_range.start() + data_range.size());
 281    :  
 282  E :    Offset start_offs = offset - data_range.start();
 283  E :    return SourceRange(source_range.start() + start_offs, size);
 284  E :  }
 285    :  
 286    :  bool BasicBlockDecomposer::FindBasicBlock(Offset offset,
 287    :                                            BasicBlock** basic_block,
 288  E :                                            Range* range) const {
 289  E :    DCHECK_LE(0, offset);
 290  E :    DCHECK(basic_block != NULL);
 291  E :    DCHECK(range != NULL);
 292  E :    DCHECK(subgraph_->original_block() != NULL);
 293  E :    DCHECK_GT(subgraph_->original_block()->size(), static_cast<size_t>(offset));
 294    :  
 295    :    RangeMapConstIter bb_iter =
 296  E :        original_address_space_.FindFirstIntersection(Range(offset, 1));
 297    :  
 298  E :    if (bb_iter == original_address_space_.end())
 299  i :      return false;
 300    :  
 301  E :    *basic_block = bb_iter->second;
 302  E :    *range = bb_iter->first;
 303  E :    return true;
 304  E :  }
 305    :  
 306  E :  BasicBlock* BasicBlockDecomposer::GetBasicBlockAt(Offset offset) const {
 307  E :    DCHECK_LE(0, offset);
 308  E :    DCHECK(subgraph_->original_block() != NULL);
 309  E :    DCHECK_GT(subgraph_->original_block()->size(), static_cast<size_t>(offset));
 310    :  
 311  E :    BasicBlock* bb = NULL;
 312  E :    Range range;
 313  E :    CHECK(FindBasicBlock(offset, &bb, &range));
 314  E :    DCHECK(bb != NULL);
 315  E :    DCHECK_EQ(offset, range.start());
 316  E :    return bb;
 317  E :  }
 318    :  
 319    :  void BasicBlockDecomposer::InitJumpTargets(Offset code_begin_offset,
 320  E :                                             Offset code_end_offset) {
 321  E :    DCHECK_LE(0, code_begin_offset);
 322  E :    DCHECK_LE(static_cast<Size>(code_end_offset), block_->size());
 323    :  
 324    :    // Make sure the jump target set is empty.
 325  E :    jump_targets_.clear();
 326    :  
 327    :    // For each referrer, check if it references code. If so, it's a jump target.
 328    :    BlockGraph::Block::ReferrerSet::const_iterator ref_iter =
 329  E :        block_->referrers().begin();
 330  E :    for (; ref_iter != block_->referrers().end(); ++ref_iter) {
 331  E :      BlockGraph::Reference ref;
 332  E :      bool found = ref_iter->first->GetReference(ref_iter->second, &ref);
 333  E :      DCHECK(found);
 334  E :      DCHECK_EQ(block_, ref.referenced());
 335  E :      DCHECK_LE(0, ref.base());
 336  E :      DCHECK_LT(static_cast<size_t>(ref.base()), block_->size());
 337  E :      DCHECK_EQ(ref.base(), ref.offset());
 338    :  
 339    :      // If the referred offset is within the code bounds, then it is a jump
 340    :      // target.
 341  E :      if (code_begin_offset <= ref.base() && ref.base() < code_end_offset)
 342  E :        jump_targets_.insert(ref.base());
 343  E :    }
 344  E :  }
 345    :  
 346    :  bool BasicBlockDecomposer::HandleInstruction(const Instruction& instruction,
 347  E :                                               Offset offset) {
 348    :    // We do not handle the SYS* instructions. These should ONLY occur inside
 349    :    // the OS system libraries, mediated by an OS system call. We expect that
 350    :    // they NEVER occur in application code.
 351  E :    if (instruction.IsSystemCall()) {
 352  i :      LOG(ERROR) << "Encountered an unexpected " << instruction.GetName()
 353    :                 << " instruction at offset " << offset << " of block '"
 354    :                 << block_->name() << "'.";
 355  i :      return false;
 356    :    }
 357    :  
 358    :    // Calculate the offset of the next instruction. We'll need this if this
 359    :    // instruction marks the end of a basic block.
 360  E :    Offset next_instruction_offset = offset + instruction.size();
 361    :  
 362    :    // If the instruction is not a branch then it needs to be appended to the
 363    :    // current basic block... which we close if the instruction is a return or
 364    :    // a call to a non-returning function.
 365  E :    if (!instruction.IsBranch()) {
 366  E :      current_instructions_.push_back(instruction);
 367  E :      if (instruction.IsReturn()) {
 368  E :        EndCurrentBasicBlock(next_instruction_offset);
 369  E :      } else if (instruction.IsCall()) {
 370  E :        BlockGraph::Reference ref;
 371    :        bool found = GetReferenceOfInstructionAt(
 372  E :            block_, offset, instruction.size(), &ref);
 373    :        if (found && Instruction::IsCallToNonReturningFunction(
 374  E :                instruction.representation(), ref.referenced(), ref.offset())) {
 375  E :          EndCurrentBasicBlock(next_instruction_offset);
 376    :        }
 377    :      }
 378  E :      return true;
 379    :    }
 380    :  
 381    :    // If the branch is not PC-Relative then it also needs to be appended to
 382    :    // the current basic block... which we then close.
 383  E :    if (!instruction.HasPcRelativeOperand(0)) {
 384  E :      current_instructions_.push_back(instruction);
 385  E :      EndCurrentBasicBlock(next_instruction_offset);
 386  E :      return true;
 387    :    }
 388    :  
 389    :    // Otherwise, we're dealing with a branch whose destination is explicit.
 390  E :    DCHECK(instruction.IsBranch());
 391  E :    DCHECK(instruction.HasPcRelativeOperand(0));
 392    :  
 393    :    // Make sure we understand the branching condition. If we don't, then
 394    :    // there's an instruction we have failed to consider.
 395    :    Successor::Condition condition = Successor::OpCodeToCondition(
 396  E :        instruction.opcode());
 397  E :    CHECK_NE(Successor::kInvalidCondition, condition)
 398    :        << "Received unknown condition for branch instruction: "
 399    :        << instruction.GetName() << ".";
 400    :  
 401    :    // If this is a conditional branch add the inverse conditional successor
 402    :    // to represent the fall-through. If we don't understand the inverse, then
 403    :    // there's an instruction we have failed to consider.
 404  E :    if (instruction.IsConditionalBranch()) {
 405    :      Successor::Condition inverse_condition =
 406  E :          Successor::InvertCondition(condition);
 407  E :      CHECK_NE(Successor::kInvalidCondition, inverse_condition)
 408    :          << "Non-invertible condition seen for branch instruction: "
 409    :          << instruction.GetName() << ".";
 410    :  
 411    :      // Create an (unresolved) successor pointing to the next instruction.
 412    :      BasicBlockReference ref(BlockGraph::PC_RELATIVE_REF,
 413    :                              1,  // The size is irrelevant in successors.
 414    :                              const_cast<Block*>(block_),
 415    :                              next_instruction_offset,
 416  E :                              next_instruction_offset);
 417  E :      current_successors_.push_front(Successor(inverse_condition, ref, 0));
 418  E :      jump_targets_.insert(next_instruction_offset);
 419    :    }
 420    :  
 421    :    // Attempt to figure out where the branch is going by finding a
 422    :    // reference inside the instruction's byte range.
 423  E :    BlockGraph::Reference ref;
 424    :    bool found = GetReferenceOfInstructionAt(
 425  E :        block_, offset, instruction.size(), &ref);
 426    :  
 427    :    // If a reference was found, prefer its destination information to the
 428    :    // information conveyed by the bytes in the instruction. This should
 429    :    // handle all inter-block jumps (thunks, tail-call elimination, etc).
 430    :    // Otherwise, create a reference into the current block.
 431  E :    if (!found) {
 432    :      Offset target_offset =
 433  E :          next_instruction_offset + instruction.representation().imm.addr;
 434  E :      DCHECK_LE(0, target_offset);
 435  E :      DCHECK_LT(static_cast<Size>(target_offset), block_->size());
 436    :      ref = BlockGraph::Reference(BlockGraph::PC_RELATIVE_REF,
 437    :                                  1,  // Size is irrelevant in successors.
 438    :                                  const_cast<Block*>(block_),
 439    :                                  target_offset,
 440  E :                                  target_offset);
 441    :    }
 442    :  
 443    :    // If the reference points to the current block, track the target offset.
 444  E :    if (ref.referenced() == block_)
 445  E :      jump_targets_.insert(ref.offset());
 446    :  
 447    :    // Create the successor, preserving the source range and label.
 448    :    BasicBlockReference bb_ref(
 449  E :        ref.type(), ref.size(), ref.referenced(), ref.offset(), ref.base());
 450  E :    Successor succ(condition, bb_ref, instruction.size());
 451  E :    succ.set_source_range(instruction.source_range());
 452  E :    succ.set_label(instruction.label());
 453  E :    current_successors_.push_front(succ);
 454    :  
 455    :    // Having just branched, we need to end the current basic block.
 456  E :    EndCurrentBasicBlock(next_instruction_offset);
 457  E :    return true;
 458  E :  }
 459    :  
 460  E :  bool BasicBlockDecomposer::EndCurrentBasicBlock(Offset end_offset) {
 461    :    // We have reached the end of the current walk or we handled a conditional
 462    :    // branch. Let's mark this as the end of a basic block.
 463  E :    int basic_block_size = end_offset - current_block_start_;
 464  E :    DCHECK_LT(0, basic_block_size);
 465    :    if (!InsertBasicBlockRange(current_block_start_,
 466    :                               basic_block_size,
 467  E :                               BasicBlock::BASIC_CODE_BLOCK)) {
 468  i :      return false;
 469    :    }
 470    :  
 471    :    // Remember the end offset as the start of the next basic block.
 472  E :    current_block_start_ = end_offset;
 473  E :    return true;
 474  E :  }
 475    :  
 476  E :  bool BasicBlockDecomposer::ParseInstructions() {
 477    :    // Find the beginning and ending offsets of code bytes within the block.
 478  E :    Offset code_begin_offset = 0;
 479  E :    Offset code_end_offset = 0;
 480  E :    if (!GetCodeRange(block_, &code_begin_offset, &code_end_offset)) {
 481  i :      LOG(ERROR) << "Failed to determine code byte range.";
 482  i :      return false;
 483    :    }
 484    :  
 485    :    // Initialize jump_targets_ to include un-discoverable targets.
 486  E :    InitJumpTargets(code_begin_offset, code_end_offset);
 487    :  
 488    :    // Disassemble the instruction stream into rudimentary basic blocks.
 489  E :    Offset offset = code_begin_offset;
 490  E :    current_block_start_ = offset;
 491  E :    while (offset < code_end_offset) {
 492    :      // Decode the next instruction.
 493  E :      Instruction instruction;
 494  E :      if (!DecodeInstruction(offset, code_end_offset, &instruction))
 495  i :        return false;
 496    :  
 497    :      // Handle the decoded instruction.
 498  E :      if (!HandleInstruction(instruction, offset))
 499  i :        return false;
 500    :  
 501    :      // Advance the instruction offset.
 502  E :      offset += instruction.size();
 503  E :    }
 504    :  
 505    :    // If we get here then we must have successfully consumed the entire code
 506    :    // range; otherwise, we should have failed to decode a partial instruction.
 507  E :    CHECK_EQ(offset, code_end_offset);
 508    :  
 509    :    // If the last bb we were working on didn't end with a RET or branch then
 510    :    // we need to close it now. We can detect this if the current_block_start_
 511    :    // does not match the current (end) offset.
 512  E :    if (current_block_start_ != code_end_offset)
 513  E :      EndCurrentBasicBlock(code_end_offset);
 514    :  
 515  E :    return true;
 516  E :  }
 517    :  
 518  E :  bool BasicBlockDecomposer::Disassemble() {
 519    :    // Parse the code bytes into instructions and rudimentary basic blocks.
 520  E :    if (!ParseInstructions()) {
 521  i :      LOG(ERROR) << "Failed to parse instruction bytes.";
 522  i :      return false;
 523    :    }
 524    :  
 525    :    // Split the basic blocks at branch targets.
 526  E :    if (!SplitCodeBlocksAtBranchTargets()) {
 527  i :      LOG(ERROR) << "Failed to split code blocks at branch targets.";
 528  i :      return false;
 529    :    }
 530    :  
 531    :    // By this point, we should have basic blocks for all visited code.
 532  E :    CheckAllJumpTargetsStartABasicCodeBlock();
 533    :  
 534    :    // Demarcate the data basic blocks. There should be no overlap with code.
 535  E :    if (!FillInDataBlocks()) {
 536  i :      LOG(ERROR) << "Failed to fill in data basic-block ranges.";
 537  i :      return false;
 538    :    }
 539    :  
 540    :    // We should now have contiguous block ranges that cover every byte in the
 541    :    // macro block. Verify that this is so.
 542  E :    CheckHasCompleteBasicBlockCoverage();
 543    :  
 544    :    // We should have propagated all of the labels in the original block into
 545    :    // the basic-block subgraph.
 546  E :    CheckAllLabelsArePreserved();
 547    :  
 548    :    // Populate the referrers in the basic block data structures by copying
 549    :    // them from the original source block.
 550  E :    if (!CopyExternalReferrers()) {
 551  i :      LOG(ERROR) << "Failed to populate basic-block referrers.";
 552  i :      return false;
 553    :    }
 554    :  
 555    :    // Populate the references in the basic block data structures by copying
 556    :    // them from the original source block. This does not handle the successor
 557    :    // references.
 558  E :    if (!CopyReferences()) {
 559  i :      LOG(ERROR) << "Failed to populate basic-block references.";
 560  i :      return false;
 561    :    }
 562    :  
 563    :    // Wire up the basic-block successors. These are not handled by
 564    :    // CopyReferences(), above.
 565  E :    if (!ResolveSuccessors()) {
 566  i :      LOG(ERROR) << "Failed to resolve basic-block successors.";
 567  i :      return false;
 568    :    }
 569    :  
 570    :    // All the control flow we have derived should be valid.
 571  E :    CheckAllControlFlowIsValid();
 572    :  
 573    :    // Mark all unreachable code blocks as padding.
 574  E :    MarkUnreachableCodeAsPadding();
 575    :  
 576    :    // ... and we're done.
 577  E :    return true;
 578  E :  }
 579    :  
 580  E :  void BasicBlockDecomposer::CheckAllJumpTargetsStartABasicCodeBlock() const {
 581  E :    if (!check_decomposition_results_)
 582  i :      return;
 583    :  
 584  E :    JumpTargets::const_iterator offset_iter(jump_targets_.begin());
 585  E :    for (; offset_iter != jump_targets_.end(); ++offset_iter) {
 586    :      // The target basic-block should be a code basic-block.
 587  E :      BasicBlock* target_bb = GetBasicBlockAt(*offset_iter);
 588  E :      CHECK(target_bb != NULL);
 589  E :      CHECK_EQ(BasicBlock::BASIC_CODE_BLOCK, target_bb->type());
 590  E :    }
 591  E :  }
 592    :  
 593  E :  void BasicBlockDecomposer::CheckHasCompleteBasicBlockCoverage() const {
 594  E :    if (!check_decomposition_results_)
 595  i :      return;
 596    :  
 597    :    // Walk through the basic-block address space.
 598  E :    Offset next_start = 0;
 599  E :    RangeMapConstIter it(original_address_space_.begin());
 600  E :    for (; it != original_address_space_.end(); ++it) {
 601  E :      CHECK_EQ(it->first.start(), next_start);
 602  E :      CHECK_EQ(it->first.start(), it->second->offset());
 603    :  
 604  E :      BasicDataBlock* data_block = BasicDataBlock::Cast(it->second);
 605  E :      if (data_block != NULL) {
 606    :        // Data block's size should match the address segment exactly.
 607  E :        CHECK_EQ(it->first.size(), data_block->size());
 608    :      }
 609  E :      BasicCodeBlock* code_block = BasicCodeBlock::Cast(it->second);
 610  E :      if (code_block != NULL) {
 611    :        // Code blocks may be short the trailing successor instruction.
 612    :        BasicCodeBlock::Successors::const_iterator succ_it(
 613  E :            code_block->successors().begin());
 614  E :        Size block_size = code_block->GetInstructionSize();
 615  E :        for (; succ_it != code_block->successors().end(); ++succ_it)
 616  E :          block_size += succ_it->instruction_size();
 617    :  
 618  E :        CHECK_GE(it->first.size(), block_size);
 619    :      }
 620  E :      next_start += it->first.size();
 621  E :    }
 622    :  
 623    :    // At this point, if there were no gaps, next start will be the same as the
 624    :    // full size of the block we're decomposing.
 625  E :    CHECK_EQ(block_->size(), static_cast<size_t>(next_start));
 626  E :  }
 627    :  
 628  E :  void BasicBlockDecomposer::CheckAllControlFlowIsValid() const {
 629  E :    if (!check_decomposition_results_)
 630  i :      return;
 631    :  
 632    :    // Check that the subgraph is valid. This will make sure that the
 633    :    // instructions and successors generally make sense.
 634  E :    CHECK(subgraph_->IsValid());
 635    :  
 636    :    // The only thing left to check is that synthesized flow-through
 637    :    // successors refer to the adjacent basic-blocks.
 638  E :    RangeMapConstIter it(original_address_space_.begin());
 639  E :    for (; it != original_address_space_.end(); ++it) {
 640  E :      const BasicCodeBlock* bb = BasicCodeBlock::Cast(it->second);
 641  E :      if (bb == NULL)
 642  E :        continue;
 643    :  
 644  E :      const BasicBlock::Instructions& instructions = bb->instructions();
 645  E :      const BasicBlock::Successors& successors = bb->successors();
 646    :  
 647    :      // There may be at most 2 successors.
 648  E :      switch (successors.size()) {
 649    :        case 0:
 650  E :          break;
 651    :  
 652    :        case 1:
 653    :          // If the successor is synthesized, then flow is from this basic-block
 654    :          // to the next adjacent one.
 655  E :          if (successors.back().instruction_size() == 0) {
 656  E :            RangeMapConstIter next(it);
 657  E :            ++next;
 658  E :            CHECK(next != original_address_space_.end());
 659  E :            CHECK_EQ(successors.back().reference().basic_block(), next->second);
 660    :          }
 661  E :          break;
 662    :  
 663    :        case 2: {
 664    :          // Exactly one of the successors should have been synthesized.
 665  E :          bool front_synthesized = successors.front().instruction_size() == 0;
 666  E :          bool back_synthesized = successors.back().instruction_size() == 0;
 667  E :          CHECK_NE(front_synthesized, back_synthesized);
 668    :  
 669    :          // The synthesized successor flows from this basic-block to the next
 670    :          // adjacent one.
 671    :          const Successor& synthesized =
 672  E :              front_synthesized ? successors.front() : successors.back();
 673  E :          RangeMapConstIter next(it);
 674  E :          ++next;
 675  E :          CHECK(next != original_address_space_.end());
 676  E :          CHECK_EQ(synthesized.reference().basic_block(), next->second);
 677  E :          break;
 678    :        }
 679    :  
 680    :        default:
 681  i :          NOTREACHED();
 682    :      }
 683  E :    }
 684  E :  }
 685    :  
 686  E :  void BasicBlockDecomposer::CheckAllLabelsArePreserved() const {
 687  E :    if (!check_decomposition_results_)
 688  i :      return;
 689    :  
 690  E :    const Block* original_block = subgraph_->original_block();
 691  E :    if (original_block == NULL)
 692  i :      return;
 693    :  
 694    :    // Remove any labels that fall *after* the given block. This can happen for
 695    :    // scope and debug-end labels when the function has no epilog. It is rare, but
 696    :    // has been observed in the wild.
 697    :    // TODO(chrisha): Find a way to preserve these. We may need the notion of an
 698    :    //     empty basic-block which gets assigned the label, or we may need to
 699    :    //     augment BBs/instructions with the ability to have two labels: one tied
 700    :    //     to the beginning of the object, and one to the end.
 701    :    Block::LabelMap::const_iterator it_past_block_end =
 702  E :        original_block->labels().lower_bound(original_block->size());
 703    :  
 704    :    // Grab a copy of the original labels (except any that are beyond the end of
 705    :    // the block data). We will be matching against these to ensure that they are
 706    :    // preserved in the BB decomposition.
 707    :    const Block::LabelMap original_labels(original_block->labels().begin(),
 708  E :                                          it_past_block_end);
 709  E :    if (original_labels.empty())
 710  E :      return;
 711    :  
 712    :    // A map to track which labels (by offset) have been found in the subgraph.
 713  E :    std::map<Offset, bool> labels_found;
 714    :  
 715    :    // Initialize the map of labels found in the subgraph.
 716  E :    Block::LabelMap::const_iterator label_iter = original_labels.begin();
 717  E :    for (; label_iter != original_labels.end(); ++label_iter)
 718  E :      labels_found.insert(std::make_pair(label_iter->first, false));
 719    :  
 720    :    // Walk through the subgraph and mark all of the labels found.
 721    :    BasicBlockSubGraph::BBCollection::const_iterator bb_iter =
 722  E :        subgraph_->basic_blocks().begin();
 723  E :    for (; bb_iter != subgraph_->basic_blocks().end(); ++bb_iter) {
 724  E :      const BasicDataBlock* data_block = BasicDataBlock::Cast(*bb_iter);
 725  E :      if (data_block != NULL) {
 726    :        // Account for labels attached to basic-blocks.
 727  E :        if (data_block->has_label()) {
 728  E :          BlockGraph::Label label;
 729  E :          CHECK(original_block->GetLabel(data_block->offset(), &label));
 730  E :          CHECK(data_block->label() == label);
 731  E :          labels_found[data_block->offset()] = true;
 732  E :        }
 733    :      }
 734    :  
 735  E :      const BasicCodeBlock* code_block = BasicCodeBlock::Cast(*bb_iter);
 736  E :      if (code_block != NULL) {
 737    :        // Account for labels attached to instructions.
 738    :        BasicBlock::Instructions::const_iterator inst_iter =
 739  E :            code_block->instructions().begin();
 740  E :        Offset inst_offset = code_block->offset();
 741  E :        for (; inst_iter != code_block->instructions().end(); ++inst_iter) {
 742  E :          const Instruction& inst = *inst_iter;
 743  E :          if (inst.has_label()) {
 744  E :            BlockGraph::Label label;
 745  E :            CHECK(original_block->GetLabel(inst_offset, &label));
 746  E :            CHECK(inst.label() == label);
 747  E :            labels_found[inst_offset] = true;
 748  E :          }
 749  E :          inst_offset += inst.size();
 750  E :        }
 751    :  
 752    :        // Account for labels attached to successors.
 753    :        BasicBlock::Successors::const_iterator succ_iter =
 754  E :            code_block->successors().begin();
 755  E :        for (; succ_iter != code_block->successors().end(); ++succ_iter) {
 756  E :          const Successor& succ = *succ_iter;
 757  E :          if (succ.has_label()) {
 758  E :            BlockGraph::Label label;
 759  E :            CHECK_NE(0U, succ.instruction_size());
 760  E :            CHECK(original_block->GetLabel(inst_offset, &label));
 761  E :            CHECK(succ.label() == label);
 762  E :            labels_found[inst_offset] = true;
 763  E :          }
 764  E :          inst_offset += succ.instruction_size();
 765  E :        }
 766    :      }
 767  E :    }
 768    :  
 769    :    // We should have the right number of labels_found (check if we added
 770    :    // something to the wrong place).
 771  E :    CHECK_EQ(original_labels.size(), labels_found.size());
 772    :  
 773    :    // Make sure all of the items in labels_found have been set to true.
 774  E :    std::map<Offset, bool>::const_iterator found_iter = labels_found.begin();
 775  E :    for (; found_iter != labels_found.end(); ++found_iter) {
 776  E :      CHECK(found_iter->second);
 777  E :    }
 778  E :  }
 779    :  
 780    :  bool BasicBlockDecomposer::InsertBasicBlockRange(Offset offset,
 781    :                                                   size_t size,
 782  E :                                                   BasicBlockType type) {
 783  E :    DCHECK_LE(0, offset);
 784  E :    DCHECK_LT(0U, size);
 785  E :    DCHECK_LE(offset + size, block_->size());
 786  E :    DCHECK(type == BasicBlock::BASIC_CODE_BLOCK || current_instructions_.empty());
 787  E :    DCHECK(type == BasicBlock::BASIC_CODE_BLOCK || current_successors_.empty());
 788    :  
 789    :    // Find or create a name for this basic block. Reserve the label, if any,
 790    :    // to propagate to the basic block if there are no instructions in the
 791    :    // block to carry the label(s).
 792  E :    BlockGraph::Label label;
 793  E :    std::string basic_block_name;
 794  E :    if (block_->GetLabel(offset, &label)) {
 795  E :      basic_block_name = label.ToString();
 796  E :    } else {
 797    :      basic_block_name =
 798    :          base::StringPrintf("<%s+%04X-%s>",
 799    :                             block_->name().c_str(),
 800    :                             offset,
 801  E :                             BasicBlock::BasicBlockTypeToString(type));
 802    :    }
 803    :  
 804    :    // Pre-flight address space insertion to make sure there's no
 805    :    // pre-existing conflicting range.
 806  E :    Range byte_range(offset, size);
 807    :    if (original_address_space_.FindFirstIntersection(byte_range) !=
 808  E :            original_address_space_.end()) {
 809  i :      LOG(ERROR) << "Attempted to insert overlapping basic block.";
 810  i :      return false;
 811    :    }
 812    :  
 813  E :    if (type == BasicBlock::BASIC_CODE_BLOCK) {
 814    :      // Create the code block.
 815  E :      BasicCodeBlock* code_block = subgraph_->AddBasicCodeBlock(basic_block_name);
 816  E :      if (code_block == NULL)
 817  i :        return false;
 818  E :      CHECK(original_address_space_.Insert(byte_range, code_block));
 819    :  
 820    :      // Populate code basic-block with instructions and successors.
 821  E :      code_block->set_offset(offset);
 822  E :      code_block->instructions().swap(current_instructions_);
 823  E :      code_block->successors().swap(current_successors_);
 824  E :    } else {
 825  E :      DCHECK(type == BasicBlock::BASIC_DATA_BLOCK);
 826    :  
 827    :      // Create the data block.
 828    :      BasicDataBlock* data_block = subgraph_->AddBasicDataBlock(
 829  E :          basic_block_name, size, block_->data() + offset);
 830  E :      if (data_block == NULL)
 831  i :        return false;
 832  E :      CHECK(original_address_space_.Insert(byte_range, data_block));
 833    :  
 834    :      // Capture the source range (if any) for the data block.
 835  E :      data_block->set_source_range(GetSourceRange(offset, size));
 836    :  
 837    :      // Data basic-blocks carry their labels at the head of the basic blocks.
 838    :      // A padding basic-block might also be labeled if the block contains
 839    :      // unreachable code (for example, INT3 or NOP instructions following a call
 840    :      // to a non-returning function).
 841  E :      data_block->set_offset(offset);
 842  E :      data_block->set_label(label);
 843    :    }
 844    :  
 845  E :    return true;
 846  E :  }
 847    :  
 848  E :  bool BasicBlockDecomposer::SplitCodeBlocksAtBranchTargets() {
 849  E :    JumpTargets::const_iterator jump_target_iter(jump_targets_.begin());
 850  E :    for (; jump_target_iter != jump_targets_.end(); ++jump_target_iter) {
 851    :      // Resolve the target basic-block.
 852  E :      Offset target_offset = *jump_target_iter;
 853  E :      BasicBlock* target_bb = NULL;
 854  E :      Range target_bb_range;
 855  E :      CHECK(FindBasicBlock(target_offset, &target_bb, &target_bb_range));
 856    :  
 857    :      // If we're jumping to the start of a basic block, there isn't any work
 858    :      // to do.
 859  E :      if (target_offset == target_bb_range.start())
 860  E :        continue;
 861    :  
 862    :      // The target must be a code block.
 863  E :      BasicCodeBlock* target_code_block = BasicCodeBlock::Cast(target_bb);
 864  E :      CHECK(target_code_block != NULL);
 865    :  
 866    :      // Otherwise, we have found a basic-block that we need to split.
 867    :      // Let's contract the range the original occupies in the basic-block
 868    :      // address space, then add a second block at the target offset.
 869  E :      size_t left_split_size = target_offset - target_bb_range.start();
 870  E :      bool removed = original_address_space_.Remove(target_bb_range);
 871  E :      DCHECK(removed);
 872    :  
 873  E :      Range left_split_range(target_bb_range.start(), left_split_size);
 874    :      bool inserted =
 875  E :          original_address_space_.Insert(left_split_range, target_code_block);
 876  E :      DCHECK(inserted);
 877    :  
 878    :      // Now we split up containing_range into two new ranges and replace
 879    :      // containing_range with the two new entries.
 880    :  
 881    :      // Slice the trailing half of the instructions and the successors
 882    :      // off the block.
 883  E :      DCHECK(current_instructions_.empty());
 884  E :      DCHECK(current_successors_.empty());
 885    :      bool split = SplitInstructionListAt(left_split_size,
 886    :                                          &target_code_block->instructions(),
 887  E :                                          &current_instructions_);
 888  E :      DCHECK(split);
 889  E :      target_code_block->successors().swap(current_successors_);
 890    :  
 891    :      // Set-up the flow-through successor for the first "half".
 892    :      BasicBlockReference ref(BlockGraph::PC_RELATIVE_REF,
 893    :                              1,  // Size is immaterial in successors.
 894    :                              const_cast<Block*>(block_),
 895    :                              target_offset,
 896  E :                              target_offset);
 897    :      target_code_block->successors().push_back(
 898  E :          Successor(Successor::kConditionTrue, ref, 0));
 899    :  
 900    :      // Create the basic-block representing the second "half".
 901    :      if (!InsertBasicBlockRange(target_offset,
 902    :                                 target_bb_range.size() - left_split_size,
 903  E :                                 target_code_block->type())) {
 904  i :        LOG(ERROR) << "Failed to insert second half of split block.";
 905  i :        return false;
 906    :      }
 907  E :    }
 908    :  
 909  E :    return true;
 910  E :  }
 911    :  
 912  E :  bool BasicBlockDecomposer::FillInDataBlocks() {
 913  E :    BlockGraph::Block::LabelMap::const_iterator iter = block_->labels().begin();
 914  E :    BlockGraph::Block::LabelMap::const_iterator end = block_->labels().end();
 915  E :    for (; iter != end; ++iter) {
 916  E :      if (!iter->second.has_attributes(BlockGraph::DATA_LABEL))
 917  E :        continue;
 918    :  
 919  E :      BlockGraph::Block::LabelMap::const_iterator next = iter;
 920  E :      ++next;
 921    :  
 922  E :      BlockGraph::Offset bb_start = iter->first;
 923  E :      BlockGraph::Offset bb_end = (next == end) ? block_->size() : next->first;
 924  E :      size_t bb_size = bb_end - bb_start;
 925  E :      if (!InsertBasicBlockRange(bb_start, bb_size, BasicBlock::BASIC_DATA_BLOCK))
 926  i :        return false;
 927  E :    }
 928  E :    return true;
 929  E :  }
 930    :  
 931  E :  bool BasicBlockDecomposer::CopyExternalReferrers() {
 932  E :    const BlockGraph::Block::ReferrerSet& referrers = block_->referrers();
 933  E :    BlockGraph::Block::ReferrerSet::const_iterator iter = referrers.begin();
 934  E :    for (; iter != referrers.end(); ++iter) {
 935    :      // Find the reference this referrer record describes.
 936  E :      const BlockGraph::Block* referrer = iter->first;
 937  E :      DCHECK(referrer != NULL);
 938    :  
 939    :      // We only care about external referrers.
 940  E :      if (referrer == block_)
 941  E :        continue;
 942    :  
 943    :      // This is an external referrer. Find the reference in the referring block.
 944  E :      Offset source_offset = iter->second;
 945  E :      BlockGraph::Reference reference;
 946  E :      bool found = referrer->GetReference(source_offset, &reference);
 947  E :      DCHECK(found);
 948    :  
 949    :      // Find the basic block the reference refers to. It can only have an
 950    :      // offset that's different from the base if it's not a code block.
 951  E :      BasicBlock* target_bb = GetBasicBlockAt(reference.base());
 952  E :      DCHECK(target_bb != NULL);
 953    :      DCHECK(reference.base() == reference.offset() ||
 954  E :             target_bb->type() != BasicBlock::BASIC_CODE_BLOCK);
 955    :  
 956    :      // Insert the referrer into the target bb's referrer set. Note that there
 957    :      // is no corresponding reference update to the referring block. The
 958    :      // target bb will track these so a BlockBuilder can properly update
 959    :      // the referrers when merging a subgraph back into the block-graph.
 960    :      bool inserted = target_bb->referrers().insert(
 961  E :          BasicBlockReferrer(referrer, source_offset)).second;
 962  E :      DCHECK(inserted);
 963  E :    }
 964    :  
 965  E :    return true;
 966  E :  }
 967    :  
 968    :  bool BasicBlockDecomposer::CopyReferences(
 969  E :      Offset item_offset, Size item_size, BasicBlockReferenceMap* refs) {
 970  E :    DCHECK_LE(0, item_offset);
 971  E :    DCHECK_LT(0U, item_size);
 972  E :    DCHECK(refs != NULL);
 973    :  
 974    :    // Figure out the bounds of item.
 975  E :    BlockGraph::Offset end_offset = item_offset + item_size;
 976    :  
 977    :    // Get iterators encompassing all references within the bounds of item.
 978    :    BlockGraph::Block::ReferenceMap::const_iterator ref_iter =
 979  E :       block_->references().lower_bound(item_offset);
 980    :    BlockGraph::Block::ReferenceMap::const_iterator end_iter =
 981  E :       block_->references().lower_bound(end_offset);
 982    :  
 983  E :    for (; ref_iter != end_iter; ++ref_iter) {
 984    :      // Calculate the local offset of this reference within item.
 985  E :      BlockGraph::Offset local_offset = ref_iter->first - item_offset;
 986  E :      const BlockGraph::Reference& reference = ref_iter->second;
 987    :  
 988    :      // We expect long references for everything except flow control.
 989  E :      CHECK_EQ(4U, reference.size());
 990  E :      DCHECK_LE(local_offset + reference.size(), static_cast<Size>(end_offset));
 991    :  
 992  E :      if (reference.referenced() != block_) {
 993    :        // For external references, we can directly reference the other block.
 994    :        bool inserted = refs->insert(std::make_pair(
 995    :              local_offset,
 996    :              BasicBlockReference(reference.type(), reference.size(),
 997    :                                  reference.referenced(), reference.offset(),
 998  E :                                  reference.base()))).second;
 999  E :        DCHECK(inserted);
1000  E :      } else {
1001    :        // For intra block_ references, find the corresponding basic block in
1002    :        // the basic block address space.
1003  E :        BasicBlock* target_bb = GetBasicBlockAt(reference.base());
1004  E :        DCHECK(target_bb != NULL);
1005    :  
1006    :        // Create target basic-block relative values for the base and offset.
1007  E :        CHECK_EQ(reference.offset(), reference.base());
1008    :  
1009    :        // Insert a reference to the target basic block.
1010    :        bool inserted = refs->insert(std::make_pair(
1011    :            local_offset,
1012    :            BasicBlockReference(reference.type(),
1013    :                                reference.size(),
1014  E :                                target_bb))).second;
1015  E :        DCHECK(inserted);
1016    :      }
1017  E :    }
1018  E :    return true;
1019  E :  }
1020    :  
1021  E :  bool BasicBlockDecomposer::CopyReferences() {
1022    :    // Copy the references for the source range of each basic-block (by
1023    :    // instruction for code basic-blocks). External referrers and successors are
1024    :    // handled in separate passes.
1025    :    BasicBlockSubGraph::BBCollection::iterator bb_iter =
1026  E :        subgraph_->basic_blocks().begin();
1027  E :    for (; bb_iter != subgraph_->basic_blocks().end(); ++bb_iter) {
1028  E :      BasicCodeBlock* code_block = BasicCodeBlock::Cast(*bb_iter);
1029  E :      if (code_block != NULL) {
1030  E :        DCHECK_EQ(BasicBlock::BASIC_CODE_BLOCK, code_block->type());
1031    :  
1032  E :        Offset inst_offset = code_block->offset();
1033    :        BasicBlock::Instructions::iterator inst_iter =
1034  E :            code_block->instructions().begin();
1035  E :        for (; inst_iter != code_block->instructions().end(); ++inst_iter) {
1036    :          if (!CopyReferences(inst_offset,
1037    :                              inst_iter->size(),
1038  E :                              &inst_iter->references())) {
1039  i :            return false;
1040    :          }
1041    :  
1042  E :          inst_offset += inst_iter->size();
1043  E :        }
1044    :      }
1045    :  
1046  E :      BasicDataBlock* data_block = BasicDataBlock::Cast(*bb_iter);
1047  E :      if (data_block != NULL) {
1048  E :        DCHECK_NE(BasicBlock::BASIC_CODE_BLOCK, data_block->type());
1049    :  
1050    :        if (!CopyReferences(data_block->offset(),
1051    :                            data_block->size(),
1052  E :                            &data_block->references())) {
1053  i :          return false;
1054    :        }
1055    :      }
1056  E :    }
1057    :  
1058  E :    return true;
1059  E :  }
1060    :  
1061  E :  bool BasicBlockDecomposer::ResolveSuccessors() {
1062    :    BasicBlockSubGraph::BBCollection::iterator bb_iter =
1063  E :        subgraph_->basic_blocks().begin();
1064  E :    for (; bb_iter != subgraph_->basic_blocks().end(); ++bb_iter) {
1065    :      // Only code basic-blocks have successors and instructions.
1066  E :      BasicCodeBlock* code_block = BasicCodeBlock::Cast(*bb_iter);
1067  E :      if (code_block == NULL)
1068  E :        continue;
1069    :  
1070    :      BasicBlock::Successors::iterator succ_iter =
1071  E :          code_block->successors().begin();
1072    :      BasicBlock::Successors::iterator succ_iter_end =
1073  E :          code_block->successors().end();
1074  E :      for (; succ_iter != succ_iter_end; ++succ_iter) {
1075  E :        if (succ_iter->reference().block() != block_)
1076  E :          continue;
1077    :  
1078    :        // Find the basic block the successor references.
1079    :        BasicBlock* target_code_block =
1080  E :            GetBasicBlockAt(succ_iter->reference().offset());
1081  E :        DCHECK(target_code_block != NULL);
1082    :  
1083    :        // We transform all successor branches into 4-byte pc-relative targets.
1084    :        succ_iter->set_reference(
1085    :            BasicBlockReference(
1086  E :                BlockGraph::PC_RELATIVE_REF, 4, target_code_block));
1087  E :        DCHECK(succ_iter->reference().IsValid());
1088  E :      }
1089  E :    }
1090    :  
1091  E :    return true;
1092  E :  }
1093    :  
1094  E :  void BasicBlockDecomposer::MarkUnreachableCodeAsPadding() {
1095  E :    BasicBlockSubGraph::ReachabilityMap rm;
1096  E :    subgraph_->GetReachabilityMap(&rm);
1097  E :    DCHECK_EQ(rm.size(), subgraph_->basic_blocks().size());
1098    :    BasicBlockSubGraph::BBCollection::iterator bb_iter =
1099  E :        subgraph_->basic_blocks().begin();
1100  E :    for (; bb_iter != subgraph_->basic_blocks().end(); ++bb_iter) {
1101  E :      BasicCodeBlock* code_bb = BasicCodeBlock::Cast(*bb_iter);
1102  E :      if (code_bb != NULL) {
1103  E :        if (!subgraph_->IsReachable(rm, code_bb))
1104  E :          code_bb->MarkAsPadding();
1105    :      }
1106  E :    }
1107  E :  }
1108    :  
1109    :  }  // namespace block_graph

Coverage information generated Thu Jul 04 09:34:53 2013.