Coverage for /Syzygy/block_graph/analysis/memory_access_analysis.cc

CoverageLines executed / instrumented / missingexe / inst / missLanguageGroup
97.0%1591640.C++source

Line-by-line coverage:

   1    :  // Copyright 2013 Google Inc. All Rights Reserved.
   2    :  //
   3    :  // Licensed under the Apache License, Version 2.0 (the "License");
   4    :  // you may not use this file except in compliance with the License.
   5    :  // You may obtain a copy of the License at
   6    :  //
   7    :  //     http://www.apache.org/licenses/LICENSE-2.0
   8    :  //
   9    :  // Unless required by applicable law or agreed to in writing, software
  10    :  // distributed under the License is distributed on an "AS IS" BASIS,
  11    :  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12    :  // See the License for the specific language governing permissions and
  13    :  // limitations under the License.
  14    :  
  15    :  #include "syzygy/block_graph/analysis/memory_access_analysis.h"
  16    :  
  17    :  #include <queue>
  18    :  #include <set>
  19    :  #include <vector>
  20    :  
  21    :  // TODO(etienneb): liveness analysis internal should be hoisted to an
  22    :  //     instructions helper namespace, and shared between analysis. It is quite
  23    :  //     common to get the information on registers defined or used by an
  24    :  //     instruction, or the memory operand read and written.
  25    :  #include "syzygy/block_graph/analysis/liveness_analysis_internal.h"
  26    :  #include "syzygy/core/assembler.h"
  27    :  
  28    :  #include "mnemonics.h"  // NOLINT
  29    :  
  30    :  namespace block_graph {
  31    :  namespace analysis {
  32    :  
  33    :  namespace {
  34    :  
  35    :  using block_graph::Operand;
  36    :  typedef core::RegisterCode RegisterCode;
  37    :  typedef block_graph::BasicBlockSubGraph::BasicBlock BasicBlock;
  38    :  typedef block_graph::BasicBlockSubGraph::BasicBlock::Instructions Instructions;
  39    :  
  40    :  }  // namespace
  41    :  
  42  E :  MemoryAccessAnalysis::MemoryAccessAnalysis() {
  43  E :  }
  44    :  
  45    :  void MemoryAccessAnalysis::GetStateAtEntryOf(const BasicBlock* bb,
  46  E :                                               State* state) const {
  47    :    // This function accepts a NULL basic block and returns a safe state.
  48  E :    DCHECK(state != NULL);
  49    :  
  50  E :    state->Clear();
  51    :  
  52  E :    if (bb == NULL)
  53  E :      return;
  54    :  
  55    :    // Skip unknown basic block.
  56  E :    StateMap::const_iterator bbentry_state = states_.find(bb);
  57  E :    if (bbentry_state == states_.end())
  58  E :      return;
  59    :  
  60    :    // Copy basic block memory information to state.
  61  E :    *state = bbentry_state->second;
  62  E :  }
  63    :  
  64    :  void MemoryAccessAnalysis::PropagateForward(const Instruction& instr,
  65  E :                                              State* state) {
  66  E :    DCHECK(state != NULL);
  67    :  
  68  E :    const _DInst& repr = instr.representation();
  69    :  
  70  E :    state->Execute(instr);
  71    :  
  72  E :    if (instr.IsCall() || instr.IsControlFlow()) {
  73  E :      state->Clear();
  74  E :      return;
  75    :    }
  76    :  
  77    :    // TODO(etienneb): Find a way to expose the defs concept.
  78  E :    LivenessAnalysis::State defs;
  79  E :    LivenessAnalysis::StateHelper::Clear(&defs);
  80  E :    if (!LivenessAnalysis::StateHelper::GetDefsOf(instr, &defs)) {
  81  E :      state->Clear();
  82  E :      return;
  83    :    }
  84    :  
  85  E :    for (int r = 0; r < core::kRegisterMax; ++r) {
  86  E :      RegisterCode reg = RegisterCode(r);
  87  E :      if (defs.IsLive(core::Register(reg))) {
  88    :        // This register is modified, clear all memory accesses with this base.
  89  E :        state->active_memory_accesses_[r].clear();
  90    :      }
  91  E :    }
  92  E :  }
  93    :  
  94    :  bool MemoryAccessAnalysis::Intersect(const block_graph::BasicBlock* bb,
  95  E :                                       const State& state) {
  96  E :    StateMap::iterator bbentry_state = states_.find(bb);
  97  E :    if (bbentry_state == states_.end()) {
  98    :      // First intersection, create a set. This set will never grow again.
  99  E :      states_[bb] = state;
 100  E :      return true;
 101    :    }
 102    :  
 103  E :    bool changed = false;
 104    :    // Subtract non redundant memory accesses.
 105  E :    for (int r = 0; r < core::kRegisterMax; ++r) {
 106  E :      RegisterCode reg = RegisterCode(r);
 107  E :      const std::set<int32>& from = state.active_memory_accesses_[r];
 108  E :      std::set<int32>& to = bbentry_state->second.active_memory_accesses_[r];
 109    :  
 110    :      // In-place intersection. Remove unknown accesses of the destination set.
 111  E :      std::set<int32>::iterator it1 = to.begin();
 112  E :      std::set<int32>::const_iterator it2 = from.begin();
 113  E :      while (it1 != to.end()) {
 114  E :        if (it2 == from.end() || *it1 < *it2) {
 115  E :          std::set<int32>::iterator old = it1;
 116  E :          ++it1;
 117  E :          to.erase(old);
 118  E :          changed = true;
 119  E :        } else if (*it2 < *it1) {
 120  E :          ++it2;
 121  E :        } else { // *it1 == *it2
 122  E :          ++it1;
 123  E :          ++it2;
 124    :        }
 125  E :      }
 126  E :    }
 127    :  
 128  E :    return changed;
 129  E :  }
 130    :  
 131    :  // This function performs a global redundant memory access analysis.
 132    :  // It is a fix-point algorithm that produce the minimal set of memory locations,
 133    :  // at the entry of each basic block. The algorithm uses a work-list to follow
 134    :  // the control flow and re-insert each modified basic block into the work-list.
 135    :  // When the end of a basic block is reached, the algorithm performs the
 136    :  // intersection of the current state with all its successors.
 137  E :  void MemoryAccessAnalysis::Analyze(const BasicBlockSubGraph* subgraph) {
 138  E :    DCHECK(subgraph != NULL);
 139    :  
 140  E :    std::queue<const BasicBlock*> working;
 141  E :    std::set<const BasicBlock*> marked;
 142    :  
 143  E :    states_.clear();
 144    :  
 145    :    // Find initial basic blocks (entry-points), add them to working queue.
 146    :    const BasicBlockSubGraph::BlockDescriptionList& descriptions =
 147  E :        subgraph->block_descriptions();
 148    :    BasicBlockSubGraph::BlockDescriptionList::const_iterator descr_iter =
 149  E :        descriptions.begin();
 150  E :    for (; descr_iter != descriptions.end(); ++descr_iter) {
 151    :      const BasicBlockSubGraph::BasicBlockOrdering& original_order =
 152  E :          descr_iter->basic_block_order;
 153  E :      if (original_order.empty())
 154  i :        continue;
 155  E :      const BasicBlock* head = original_order.front();
 156  E :      if (marked.insert(head).second) {
 157  E :        working.push(original_order.front());
 158  E :        State empty;
 159  E :        Intersect(head, empty);
 160  E :      }
 161  E :    }
 162    :  
 163  E :    DCHECK(!working.empty());
 164    :  
 165    :    // Working set algorithm until fixed point.
 166  E :    while (!working.empty()) {
 167  E :      const BasicBlock* bb = working.front();
 168  E :      working.pop();
 169  E :      marked.erase(bb);
 170    :  
 171  E :      const BasicCodeBlock* bb_code = BasicCodeBlock::Cast(bb);
 172  E :      if (bb_code == NULL) {
 173    :        // Invalidate all.
 174  i :        states_.clear();
 175  i :        return;
 176    :      }
 177    :  
 178  E :      State state;
 179  E :      GetStateAtEntryOf(bb, &state);
 180    :  
 181    :      // Walk through this basic block to obtain an updated state.
 182  E :      const Instructions& instructions = bb_code->instructions();
 183  E :      Instructions::const_iterator inst_iter = instructions.begin();
 184  E :      for ( ; inst_iter != instructions.end(); ++inst_iter) {
 185  E :        const Instruction& inst = *inst_iter;
 186  E :        const BasicBlock::BasicBlockReferenceMap& references = inst.references();
 187  E :        PropagateForward(inst, &state);
 188  E :      }
 189    :  
 190    :      // Commit updated state to successors, and re-insert modified basic blocks
 191    :      // to the working queue to be processed again.
 192  E :      const BasicBlock::Successors& successors = bb_code->successors();
 193  E :      BasicBlock::Successors::const_iterator succ = successors.begin();
 194  E :      for (; succ != successors.end(); ++succ) {
 195  E :        BasicBlock* basic_block = succ->reference().basic_block();
 196  E :        if (basic_block == NULL) {
 197    :          // Invalidate all.
 198  E :          states_.clear();
 199  E :          return;
 200    :        }
 201    :  
 202    :        // Intersect current state with successor 'basic_block'.
 203  E :        bool changed = Intersect(basic_block, state);
 204  E :        if (changed) {
 205    :          // When not already in working queue, mark and add it.
 206  E :          if (marked.insert(basic_block).second)
 207  E :            working.push(basic_block);
 208    :        }
 209  E :      }
 210  E :    }
 211  E :  }
 212    :  
 213  E :  MemoryAccessAnalysis::State::State() {
 214  E :  }
 215    :  
 216  E :  MemoryAccessAnalysis::State::State(const State& state) {
 217  E :    for (int r = 0; r < core::kRegisterMax; ++r) {
 218  E :      RegisterCode reg = RegisterCode(r);
 219  E :      active_memory_accesses_[reg] = state.active_memory_accesses_[reg];
 220  E :    }
 221  E :  }
 222    :  
 223    :  bool MemoryAccessAnalysis::State::HasNonRedundantAccess(
 224  E :      const Instruction& instr) const {
 225  E :    const _DInst& repr = instr.representation();
 226    :  
 227    :    // Load effective address instruction do not perform a memory access.
 228  E :    if (repr.opcode == I_LEA)
 229  E :      return false;
 230    :  
 231    :    // Skip string instructions.
 232  E :    if ((FLAG_GET_PREFIX(repr.flags) & (FLAG_REPNZ | FLAG_REP)) != 0)
 233  E :      return true;
 234    :  
 235    :    // Check each operand to find non redundant access.
 236  E :    for (size_t op_id = 0; op_id < OPERANDS_NO; ++op_id) {
 237  E :      const _Operand& op = repr.ops[op_id];
 238    :  
 239    :      // Filter unrecognized addressing mode.
 240  E :      switch (op.type) {
 241    :        case O_DISP:
 242    :        case O_MEM:
 243  E :          return true;
 244    :        case O_SMEM: {
 245  E :          if (op.index < R_EAX || op.index > R_EDI)
 246  i :            return true;
 247    :  
 248    :          // Simple memory dereference with optional displacement.
 249  E :          RegisterCode base_reg = RegisterCode(op.index - R_EAX);
 250    :  
 251  E :          BasicBlockReference reference;
 252  E :          if (instr.FindOperandReference(op_id, &reference))
 253  E :            return true;
 254    :  
 255  E :          DCHECK(base_reg < core::kRegisterMax);
 256  E :          const std::set<int32>& accesses = active_memory_accesses_[base_reg];
 257  E :          if (accesses.find(repr.disp) == accesses.end())
 258  E :            return true;
 259    :        }
 260    :        break;
 261    :      }
 262  E :    }
 263    :  
 264  E :    return false;
 265  E :  }
 266    :  
 267  E :  void MemoryAccessAnalysis::State::Execute(const Instruction& instr) {
 268  E :    const _DInst& repr = instr.representation();
 269    :  
 270    :    // Skip strings instructions.
 271  E :    if ((FLAG_GET_PREFIX(repr.flags) & (FLAG_REPNZ | FLAG_REP)) != 0)
 272  E :      return;
 273    :  
 274    :    // Load effective address instruction do not perform a memory access.
 275  E :    if (repr.opcode == I_LEA)
 276  E :      return;
 277    :  
 278    :    // For each operand, insert them as a redundant access.
 279  E :    for (size_t op_id = 0; op_id < OPERANDS_NO; ++op_id) {
 280  E :      const _Operand& op = repr.ops[op_id];
 281    :  
 282  E :      if (op.type != O_SMEM)
 283  E :        continue;
 284    :  
 285  E :      if (op.index < R_EAX || op.index > R_EDI)
 286  i :        continue;
 287    :  
 288    :      // Simple memory dereference with optional displacement.
 289  E :      RegisterCode base_reg = RegisterCode(op.index - R_EAX);
 290    :  
 291  E :      BasicBlockReference reference;
 292  E :      if (instr.FindOperandReference(op_id, &reference))
 293  E :        continue;
 294    :  
 295  E :      DCHECK(base_reg < core::kRegisterMax);
 296  E :      active_memory_accesses_[base_reg].insert(repr.disp);
 297  E :    }
 298  E :  }
 299    :  
 300  E :  void MemoryAccessAnalysis::State::Clear() {
 301  E :    for (int r = 0; r < core::kRegisterMax; ++r) {
 302  E :      RegisterCode reg = RegisterCode(r);
 303  E :      active_memory_accesses_[reg].clear();
 304  E :    }
 305  E :  }
 306    :  
 307    :  }  // namespace analysis
 308    :  }  // namespace block_graph

Coverage information generated Thu Jul 04 09:34:53 2013.